Quantum black holes as solvents

2021
journal article
article
2
cris.lastimport.wos2024-04-09T19:13:25Z
dc.abstract.enAlmost all of the entropy in the universe is in the form of Bekenstein-Hawking (BH) entropy of super-massive black holes. This entropy, if it satisfes Boltzmann’s equation S = log N , hence represents almost all the accessible phase space of the Universe, somehow associated to objects which themselves fll out a very small fraction of ordinary three-dimensional space. Although time scales are very long, it is believed that black holes will eventually evaporate by emitting Hawking radiation, which is thermal when counted mode by mode. A pure quantum state collapsing to a black hole will hence eventually re-emerge as a state with strictly positive entropy, which constitutes the famous black hole information paradox. Expanding on a remark by Hawking we posit that BH entropy is a thermodynamic entropy, which must be distinguished from information-theoretic entropy. The paradox can then be explained by information return in Hawking radiation. The novel perspective advanced here is that if BH entropy counts the number of accessible physical states in a quantum black hole, then the paradox can be seen as an instance of the fundamental problem of statistical mechanics. We suggest a specifc analogy to the increase of the entropy in a solvation process. We further show that the huge phase volume (N ), which must be made available to the universe in a gravitational collapse, cannot originate from the entanglement between ordinary matter and/or radiation inside and outside the black hole. We argue that, instead, the quantum degrees of freedom of the gravitational feld must get activated near the singularity, resulting in a fnal state of the ‘entangled entanglement’ form involving both matter and gravity.pl
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Zespół Zakładów Fizyki Teoretycznejpl
dc.contributor.authorAurell, Erik - 425217 pl
dc.contributor.authorEckstein, Michał - 106698 pl
dc.contributor.authorHorodecki, Pawełpl
dc.date.accessioned2021-12-07T21:02:11Z
dc.date.available2021-12-07T21:02:11Z
dc.date.issued2021pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.versionostateczna wersja wydawcy
dc.description.volume51pl
dc.identifier.articleid54pl
dc.identifier.doi10.1007/s10701-021-00456-7pl
dc.identifier.eissn1572-9516pl
dc.identifier.issn0015-9018pl
dc.identifier.projectPOIR.04.04.00-00-17C1/18-00pl
dc.identifier.project2017/24/C/ST2/00322pl
dc.identifier.project2018/MAB/5pl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/284778
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl*
dc.share.typeinne
dc.subject.enblack holespl
dc.subject.enquantum informationpl
dc.subject.enHawking radiationpl
dc.subtypeArticlepl
dc.titleQuantum black holes as solventspl
dc.title.journalFoundations of Physicspl
dc.typeJournalArticlepl
dspace.entity.typePublication
cris.lastimport.wos
2024-04-09T19:13:25Z
dc.abstract.enpl
Almost all of the entropy in the universe is in the form of Bekenstein-Hawking (BH) entropy of super-massive black holes. This entropy, if it satisfes Boltzmann’s equation S = log N , hence represents almost all the accessible phase space of the Universe, somehow associated to objects which themselves fll out a very small fraction of ordinary three-dimensional space. Although time scales are very long, it is believed that black holes will eventually evaporate by emitting Hawking radiation, which is thermal when counted mode by mode. A pure quantum state collapsing to a black hole will hence eventually re-emerge as a state with strictly positive entropy, which constitutes the famous black hole information paradox. Expanding on a remark by Hawking we posit that BH entropy is a thermodynamic entropy, which must be distinguished from information-theoretic entropy. The paradox can then be explained by information return in Hawking radiation. The novel perspective advanced here is that if BH entropy counts the number of accessible physical states in a quantum black hole, then the paradox can be seen as an instance of the fundamental problem of statistical mechanics. We suggest a specifc analogy to the increase of the entropy in a solvation process. We further show that the huge phase volume (N ), which must be made available to the universe in a gravitational collapse, cannot originate from the entanglement between ordinary matter and/or radiation inside and outside the black hole. We argue that, instead, the quantum degrees of freedom of the gravitational feld must get activated near the singularity, resulting in a fnal state of the ‘entangled entanglement’ form involving both matter and gravity.
dc.affiliationpl
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Zespół Zakładów Fizyki Teoretycznej
dc.contributor.authorpl
Aurell, Erik - 425217
dc.contributor.authorpl
Eckstein, Michał - 106698
dc.contributor.authorpl
Horodecki, Paweł
dc.date.accessioned
2021-12-07T21:02:11Z
dc.date.available
2021-12-07T21:02:11Z
dc.date.issuedpl
2021
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
51
dc.identifier.articleidpl
54
dc.identifier.doipl
10.1007/s10701-021-00456-7
dc.identifier.eissnpl
1572-9516
dc.identifier.issnpl
0015-9018
dc.identifier.projectpl
POIR.04.04.00-00-17C1/18-00
dc.identifier.projectpl
2017/24/C/ST2/00322
dc.identifier.projectpl
2018/MAB/5
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/284778
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
inne
dc.subject.enpl
black holes
dc.subject.enpl
quantum information
dc.subject.enpl
Hawking radiation
dc.subtypepl
Article
dc.titlepl
Quantum black holes as solvents
dc.title.journalpl
Foundations of Physics
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
10
Views per month
Views per city
Ashburn
3
Wroclaw
2
Dublin
1
Katowice
1
Krakow
1
Downloads
aurell_eckstein_horodecki_quantum_black_holes_as_solvents_2021.pdf
7
aurell_eckstein_horodecki_quantum_black_holes_as_solvents_2021.odt
1