Subexponential-time algorithms for finding large induced sparse subgraphs

2019
book section
conference proceedings
1
cris.lastimport.wos2024-04-10T02:58:50Z
dc.abstract.enLetCandDbe hereditary graph classes. Consider the following problem: given a graphG∈ D,find a largest, in terms of the number of vertices, induced subgraph ofGthat belongs toC. Weprove that it can be solved in2o(n)time, wherenis the number of vertices ofG, if the followingconditions are satisfied:the graphs inCare sparse, i.e., they have linearly many edges in terms of the number of vertices;the graphs inDadmit balanced separators of size governed by their density, e.g.,O(∆)orO(√m), where∆andmdenote the maximum degree and the number of edges, respectively; andthe considered problem admits a single-exponential fixed-parameter algorithm when parameter-ized by the treewidth of the input graph.This leads, for example, to the following corollaries for specific classesCandD:a largest induced forest in aPt-free graph can be found in2 ̃O(n2/3)time, for every fixedt; anda largest induced planar graph in a string graph can be found in2 ̃O(n3/4) time.pl
dc.affiliationWydział Matematyki i Informatyki : Instytut Informatyki Analitycznejpl
dc.conference14th International Symposium on Parameterized and Exact Computation , IPEC 2019
dc.conference.cityMonachium
dc.conference.countryNiemcy
dc.conference.datefinish2019-09-13
dc.conference.datestart2019-09-11
dc.conference.shortcutIPEC
dc.contributor.authorNovotná, Janapl
dc.contributor.authorOkrasa, Karolinapl
dc.contributor.authorPilipczuk, Michałpl
dc.contributor.authorRzążewski, Pawełpl
dc.contributor.authorvan Leeuwen, Erik Janpl
dc.contributor.authorWalczak, Bartosz - 114113 pl
dc.contributor.editorJansen, Bart M. P.pl
dc.contributor.editorTelle, Jan Arnepl
dc.date.accessioned2020-01-13T08:44:22Z
dc.date.available2020-01-13T08:44:22Z
dc.date.issued2019pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.conftypeinternationalpl
dc.description.physical23:1-23:11pl
dc.description.publication1,55pl
dc.description.seriesLIPIcs - Leibniz International Proceedings in Informatics
dc.description.seriesnumberVol. 148
dc.description.versionostateczna wersja wydawcy
dc.identifier.doi10.4230/LIPIcs.IPEC.2019.23pl
dc.identifier.isbn978-3-95977-129-0pl
dc.identifier.project2015/17/B/ST6/01873pl
dc.identifier.projectROD UJ / OPpl
dc.identifier.seriesissn1868-8969
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/130538
dc.languageengpl
dc.language.containerengpl
dc.pubinfoDagstuhl : Schloss Dagstuhl - Leibniz-Zentrum für Informatikpl
dc.rightsUdzielam licencji. Uznanie autorstwa 3.0*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/legalcode*
dc.share.typeinne
dc.subject.ensubexponential algorithmpl
dc.subject.enfeedback vertex setpl
dc.subject.enPt-free graphspl
dc.subject.enstring graphspl
dc.subtypeConferenceProceedingspl
dc.titleSubexponential-time algorithms for finding large induced sparse subgraphspl
dc.title.container14th International Symposium on Parameterized and Exact Computation (IPEC 2019)pl
dc.typeBookSectionpl
dspace.entity.typePublication
cris.lastimport.wos
2024-04-10T02:58:50Z
dc.abstract.enpl
LetCandDbe hereditary graph classes. Consider the following problem: given a graphG∈ D,find a largest, in terms of the number of vertices, induced subgraph ofGthat belongs toC. Weprove that it can be solved in2o(n)time, wherenis the number of vertices ofG, if the followingconditions are satisfied:the graphs inCare sparse, i.e., they have linearly many edges in terms of the number of vertices;the graphs inDadmit balanced separators of size governed by their density, e.g.,O(∆)orO(√m), where∆andmdenote the maximum degree and the number of edges, respectively; andthe considered problem admits a single-exponential fixed-parameter algorithm when parameter-ized by the treewidth of the input graph.This leads, for example, to the following corollaries for specific classesCandD:a largest induced forest in aPt-free graph can be found in2 ̃O(n2/3)time, for every fixedt; anda largest induced planar graph in a string graph can be found in2 ̃O(n3/4) time.
dc.affiliationpl
Wydział Matematyki i Informatyki : Instytut Informatyki Analitycznej
dc.conference
14th International Symposium on Parameterized and Exact Computation , IPEC 2019
dc.conference.city
Monachium
dc.conference.country
Niemcy
dc.conference.datefinish
2019-09-13
dc.conference.datestart
2019-09-11
dc.conference.shortcut
IPEC
dc.contributor.authorpl
Novotná, Jana
dc.contributor.authorpl
Okrasa, Karolina
dc.contributor.authorpl
Pilipczuk, Michał
dc.contributor.authorpl
Rzążewski, Paweł
dc.contributor.authorpl
van Leeuwen, Erik Jan
dc.contributor.authorpl
Walczak, Bartosz - 114113
dc.contributor.editorpl
Jansen, Bart M. P.
dc.contributor.editorpl
Telle, Jan Arne
dc.date.accessioned
2020-01-13T08:44:22Z
dc.date.available
2020-01-13T08:44:22Z
dc.date.issuedpl
2019
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.conftypepl
international
dc.description.physicalpl
23:1-23:11
dc.description.publicationpl
1,55
dc.description.series
LIPIcs - Leibniz International Proceedings in Informatics
dc.description.seriesnumber
Vol. 148
dc.description.version
ostateczna wersja wydawcy
dc.identifier.doipl
10.4230/LIPIcs.IPEC.2019.23
dc.identifier.isbnpl
978-3-95977-129-0
dc.identifier.projectpl
2015/17/B/ST6/01873
dc.identifier.projectpl
ROD UJ / OP
dc.identifier.seriesissn
1868-8969
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/130538
dc.languagepl
eng
dc.language.containerpl
eng
dc.pubinfopl
Dagstuhl : Schloss Dagstuhl - Leibniz-Zentrum für Informatik
dc.rights*
Udzielam licencji. Uznanie autorstwa 3.0
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/3.0/legalcode
dc.share.type
inne
dc.subject.enpl
subexponential algorithm
dc.subject.enpl
feedback vertex set
dc.subject.enpl
Pt-free graphs
dc.subject.enpl
string graphs
dc.subtypepl
ConferenceProceedings
dc.titlepl
Subexponential-time algorithms for finding large induced sparse subgraphs
dc.title.containerpl
14th International Symposium on Parameterized and Exact Computation (IPEC 2019)
dc.typepl
BookSection
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
18
Views per month
Views per city
Des Moines
5
Dublin
4
Ashburn
2
Wroclaw
2
Chandler
1
Downloads
walczak_et-al_subexponential_time_algorithms_for_finding_2019.pdf
7