Simple view
Full metadata view
Authors
Statistics
Subexponential-time algorithms for finding large induced sparse subgraphs
subexponential algorithm
feedback vertex set
Pt-free graphs
string graphs
LetCandDbe hereditary graph classes. Consider the following problem: given a graphG∈ D,find a largest, in terms of the number of vertices, induced subgraph ofGthat belongs toC. Weprove that it can be solved in2o(n)time, wherenis the number of vertices ofG, if the followingconditions are satisfied:the graphs inCare sparse, i.e., they have linearly many edges in terms of the number of vertices;the graphs inDadmit balanced separators of size governed by their density, e.g.,O(∆)orO(√m), where∆andmdenote the maximum degree and the number of edges, respectively; andthe considered problem admits a single-exponential fixed-parameter algorithm when parameter-ized by the treewidth of the input graph.This leads, for example, to the following corollaries for specific classesCandD:a largest induced forest in aPt-free graph can be found in2 ̃O(n2/3)time, for every fixedt; anda largest induced planar graph in a string graph can be found in2 ̃O(n3/4) time.
cris.lastimport.wos | 2024-04-10T02:58:50Z | |
dc.abstract.en | LetCandDbe hereditary graph classes. Consider the following problem: given a graphG∈ D,find a largest, in terms of the number of vertices, induced subgraph ofGthat belongs toC. Weprove that it can be solved in2o(n)time, wherenis the number of vertices ofG, if the followingconditions are satisfied:the graphs inCare sparse, i.e., they have linearly many edges in terms of the number of vertices;the graphs inDadmit balanced separators of size governed by their density, e.g.,O(∆)orO(√m), where∆andmdenote the maximum degree and the number of edges, respectively; andthe considered problem admits a single-exponential fixed-parameter algorithm when parameter-ized by the treewidth of the input graph.This leads, for example, to the following corollaries for specific classesCandD:a largest induced forest in aPt-free graph can be found in2 ̃O(n2/3)time, for every fixedt; anda largest induced planar graph in a string graph can be found in2 ̃O(n3/4) time. | pl |
dc.affiliation | Wydział Matematyki i Informatyki : Instytut Informatyki Analitycznej | pl |
dc.conference | 14th International Symposium on Parameterized and Exact Computation , IPEC 2019 | |
dc.conference.city | Monachium | |
dc.conference.country | Niemcy | |
dc.conference.datefinish | 2019-09-13 | |
dc.conference.datestart | 2019-09-11 | |
dc.conference.shortcut | IPEC | |
dc.contributor.author | Novotná, Jana | pl |
dc.contributor.author | Okrasa, Karolina | pl |
dc.contributor.author | Pilipczuk, Michał | pl |
dc.contributor.author | Rzążewski, Paweł | pl |
dc.contributor.author | van Leeuwen, Erik Jan | pl |
dc.contributor.author | Walczak, Bartosz - 114113 | pl |
dc.contributor.editor | Jansen, Bart M. P. | pl |
dc.contributor.editor | Telle, Jan Arne | pl |
dc.date.accessioned | 2020-01-13T08:44:22Z | |
dc.date.available | 2020-01-13T08:44:22Z | |
dc.date.issued | 2019 | pl |
dc.date.openaccess | 0 | |
dc.description.accesstime | w momencie opublikowania | |
dc.description.conftype | international | pl |
dc.description.physical | 23:1-23:11 | pl |
dc.description.publication | 1,55 | pl |
dc.description.series | LIPIcs - Leibniz International Proceedings in Informatics | |
dc.description.seriesnumber | Vol. 148 | |
dc.description.version | ostateczna wersja wydawcy | |
dc.identifier.doi | 10.4230/LIPIcs.IPEC.2019.23 | pl |
dc.identifier.isbn | 978-3-95977-129-0 | pl |
dc.identifier.project | 2015/17/B/ST6/01873 | pl |
dc.identifier.project | ROD UJ / OP | pl |
dc.identifier.seriesissn | 1868-8969 | |
dc.identifier.uri | https://ruj.uj.edu.pl/xmlui/handle/item/130538 | |
dc.language | eng | pl |
dc.language.container | eng | pl |
dc.pubinfo | Dagstuhl : Schloss Dagstuhl - Leibniz-Zentrum für Informatik | pl |
dc.rights | Udzielam licencji. Uznanie autorstwa 3.0 | * |
dc.rights.licence | CC-BY | |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/legalcode | * |
dc.share.type | inne | |
dc.subject.en | subexponential algorithm | pl |
dc.subject.en | feedback vertex set | pl |
dc.subject.en | Pt-free graphs | pl |
dc.subject.en | string graphs | pl |
dc.subtype | ConferenceProceedings | pl |
dc.title | Subexponential-time algorithms for finding large induced sparse subgraphs | pl |
dc.title.container | 14th International Symposium on Parameterized and Exact Computation (IPEC 2019) | pl |
dc.type | BookSection | pl |
dspace.entity.type | Publication |
* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.
Views
18
Views per month
Views per city
Downloads
Open Access
License
Except as otherwise noted, this item is licensed under : Udzielam licencji. Uznanie autorstwa 3.0