Thermal transformations of Cu–Mg (Zn)–Al(Fe) hydrotalcite-like materials into metal oxide systems and their catalytic activity in selective oxidation of ammonia to dinitrogen

2013
journal article
article
43
dc.abstract.enLayered double hydroxides (LDHs) containing $Mg^{2+}$, $Cu^{2+}$ or $Zn^{2+}$ cations in the $Me^{II}$ positions and $Al^{3+}$ and $Fe^{3+}$ in the $Me^{III}$ positions were synthesized by co- precipitation method. Detailed studies of thermal trans- formation of obtained LDHs into metal oxide systems were performed using high temperature X-ray diffraction in oxidising and reducing atmosphere, thermogravimetry coupled with mass spectrometry and temperature-pro- grammed reduction. The LDH samples calcined at 600 and 900 $^{o}\textrm{C}$ were tested in the role of catalysts for selective oxidation of ammonia into nitrogen and water vapour. It was shown that all copper congaing samples presented high catalytic activity and additionally, for the Cu–Mg–Al and Cu–Mg–Fe hydrotalcite samples calcined at 600 $^{o}\textrm{C}$ rela- tively high stability and selectivity to dinitrogen was obtained. An increase in calcination temperature to 900 $^{o}\textrm{C}$ resulted in a decrease of their catalytic activity, possibly due to formation of well-crystallised metal oxide phase which are less catalytically active in the process of selective oxidation of ammonia.pl
dc.affiliationWydział Chemii : Zakład Chemii Nieorganicznejpl
dc.affiliationWydział Chemii : Zakład Technologii Chemicznejpl
dc.contributor.authorJabłońska, Magdalena - 107656 pl
dc.contributor.authorChmielarz, Lucjan - 127527 pl
dc.contributor.authorWęgrzyn, Agnieszka - 132595 pl
dc.contributor.authorGuzik, Katarzyna - 151366 pl
dc.contributor.authorPiwowarska, Zofia - 131435 pl
dc.contributor.authorWitkowski, Stefan - 132669 pl
dc.contributor.authorWalton, Richard I.pl
dc.contributor.authorDunne, Peter W.pl
dc.contributor.authorKovanda, Františekpl
dc.date.accession2018-07-12pl
dc.date.accessioned2015-06-08T10:12:39Z
dc.date.available2015-06-08T10:12:39Z
dc.date.issued2013pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number2pl
dc.description.physical731-747pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume114pl
dc.identifier.doi10.1007/s10973-012-2935-9pl
dc.identifier.eissn1588-2926pl
dc.identifier.issn1388-6150pl
dc.identifier.projectROD UJ / Ppl
dc.identifier.urihttp://ruj.uj.edu.pl/xmlui/handle/item/8960
dc.identifier.weblinkhttps://link.springer.com/content/pdf/10.1007%2Fs10973-012-2935-9.pdfpl
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl*
dc.share.typeinne
dc.subtypeArticlepl
dc.titleThermal transformations of Cu–Mg (Zn)–Al(Fe) hydrotalcite-like materials into metal oxide systems and their catalytic activity in selective oxidation of ammonia to dinitrogenpl
dc.title.journalJournal of Thermal Analysis and Calorimetrypl
dc.typeJournalArticlepl
dspace.entity.typePublication
dc.abstract.enpl
Layered double hydroxides (LDHs) containing $Mg^{2+}$, $Cu^{2+}$ or $Zn^{2+}$ cations in the $Me^{II}$ positions and $Al^{3+}$ and $Fe^{3+}$ in the $Me^{III}$ positions were synthesized by co- precipitation method. Detailed studies of thermal trans- formation of obtained LDHs into metal oxide systems were performed using high temperature X-ray diffraction in oxidising and reducing atmosphere, thermogravimetry coupled with mass spectrometry and temperature-pro- grammed reduction. The LDH samples calcined at 600 and 900 $^{o}\textrm{C}$ were tested in the role of catalysts for selective oxidation of ammonia into nitrogen and water vapour. It was shown that all copper congaing samples presented high catalytic activity and additionally, for the Cu–Mg–Al and Cu–Mg–Fe hydrotalcite samples calcined at 600 $^{o}\textrm{C}$ rela- tively high stability and selectivity to dinitrogen was obtained. An increase in calcination temperature to 900 $^{o}\textrm{C}$ resulted in a decrease of their catalytic activity, possibly due to formation of well-crystallised metal oxide phase which are less catalytically active in the process of selective oxidation of ammonia.
dc.affiliationpl
Wydział Chemii : Zakład Chemii Nieorganicznej
dc.affiliationpl
Wydział Chemii : Zakład Technologii Chemicznej
dc.contributor.authorpl
Jabłońska, Magdalena - 107656
dc.contributor.authorpl
Chmielarz, Lucjan - 127527
dc.contributor.authorpl
Węgrzyn, Agnieszka - 132595
dc.contributor.authorpl
Guzik, Katarzyna - 151366
dc.contributor.authorpl
Piwowarska, Zofia - 131435
dc.contributor.authorpl
Witkowski, Stefan - 132669
dc.contributor.authorpl
Walton, Richard I.
dc.contributor.authorpl
Dunne, Peter W.
dc.contributor.authorpl
Kovanda, František
dc.date.accessionpl
2018-07-12
dc.date.accessioned
2015-06-08T10:12:39Z
dc.date.available
2015-06-08T10:12:39Z
dc.date.issuedpl
2013
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.numberpl
2
dc.description.physicalpl
731-747
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
114
dc.identifier.doipl
10.1007/s10973-012-2935-9
dc.identifier.eissnpl
1588-2926
dc.identifier.issnpl
1388-6150
dc.identifier.projectpl
ROD UJ / P
dc.identifier.uri
http://ruj.uj.edu.pl/xmlui/handle/item/8960
dc.identifier.weblinkpl
https://link.springer.com/content/pdf/10.1007%2Fs10973-012-2935-9.pdf
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
inne
dc.subtypepl
Article
dc.titlepl
Thermal transformations of Cu–Mg (Zn)–Al(Fe) hydrotalcite-like materials into metal oxide systems and their catalytic activity in selective oxidation of ammonia to dinitrogen
dc.title.journalpl
Journal of Thermal Analysis and Calorimetry
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.