Self-gravitating magnetized tori around black holes in general relativity

2019
journal article
article
11
dc.abstract.enWe investigate stationary, self-gravitating, magnetized disks (or tori) around black holes. The models are obtained by numerically solving the coupled system of the Einstein equations and the equations of ideal general-relativistic magnetohydrodynamics. The mathematical formulation and numerical aspects of our approach are similar to those reported in previous works modeling stationary self-gravitating perfect-fluid tori, but the inclusion of magnetic fields represents a new ingredient. Following previous studies of purely hydrodynamical configurations, we construct our models assuming Keplerian rotation in the disks and both spinning and spinless black holes. We focus on the case of a toroidal distribution of the magnetic field and build a large set of models corresponding to a wide range of values of the magnetization parameter, starting with weakly magnetized disks and ending at configurations in which the magnetic pressure dominates over the thermal one. In all our models, the magnetic field affects the equilibrium structure of the torus mainly due to the magnetic pressure. In particular, an increasing contribution of the magnetic field shifts the location of the maximum of the rest-mass density towards inner regions of the disk. The total mass of the system and the angular momentum are affected by the magnetic field in a complex way, that depends on the black hole spin and the location of the inner radius of the disk. The nonlinear dynamical stability analysis of the solutions presented in this paper will be reported elsewhere.pl
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiegopl
dc.contributor.authorMach, Patryk - 159226 pl
dc.contributor.authorGimeno-Soler, Sergiopl
dc.contributor.authorFont, José A.pl
dc.contributor.authorOdrzywołek, Andrzej - 131140 pl
dc.contributor.authorPiróg, Michał - 207503 pl
dc.date.accessioned2019-06-19T10:15:50Z
dc.date.available2019-06-19T10:15:50Z
dc.date.issued2019pl
dc.description.number10pl
dc.description.volume99pl
dc.identifier.articleid104063pl
dc.identifier.doi10.1103/PhysRevD.99.104063pl
dc.identifier.eissn2470-0029pl
dc.identifier.issn2470-0010pl
dc.identifier.projectROD UJ / Opl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/77497
dc.languageengpl
dc.language.containerengpl
dc.rightsDodaję tylko opis bibliograficzny*
dc.rights.licenceBez licencji otwartego dostępu
dc.rights.uri*
dc.subtypeArticlepl
dc.titleSelf-gravitating magnetized tori around black holes in general relativitypl
dc.title.journalPhysical Review. Dpl
dc.typeJournalArticlepl
dspace.entity.typePublication
dc.abstract.enpl
We investigate stationary, self-gravitating, magnetized disks (or tori) around black holes. The models are obtained by numerically solving the coupled system of the Einstein equations and the equations of ideal general-relativistic magnetohydrodynamics. The mathematical formulation and numerical aspects of our approach are similar to those reported in previous works modeling stationary self-gravitating perfect-fluid tori, but the inclusion of magnetic fields represents a new ingredient. Following previous studies of purely hydrodynamical configurations, we construct our models assuming Keplerian rotation in the disks and both spinning and spinless black holes. We focus on the case of a toroidal distribution of the magnetic field and build a large set of models corresponding to a wide range of values of the magnetization parameter, starting with weakly magnetized disks and ending at configurations in which the magnetic pressure dominates over the thermal one. In all our models, the magnetic field affects the equilibrium structure of the torus mainly due to the magnetic pressure. In particular, an increasing contribution of the magnetic field shifts the location of the maximum of the rest-mass density towards inner regions of the disk. The total mass of the system and the angular momentum are affected by the magnetic field in a complex way, that depends on the black hole spin and the location of the inner radius of the disk. The nonlinear dynamical stability analysis of the solutions presented in this paper will be reported elsewhere.
dc.affiliationpl
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiego
dc.contributor.authorpl
Mach, Patryk - 159226
dc.contributor.authorpl
Gimeno-Soler, Sergio
dc.contributor.authorpl
Font, José A.
dc.contributor.authorpl
Odrzywołek, Andrzej - 131140
dc.contributor.authorpl
Piróg, Michał - 207503
dc.date.accessioned
2019-06-19T10:15:50Z
dc.date.available
2019-06-19T10:15:50Z
dc.date.issuedpl
2019
dc.description.numberpl
10
dc.description.volumepl
99
dc.identifier.articleidpl
104063
dc.identifier.doipl
10.1103/PhysRevD.99.104063
dc.identifier.eissnpl
2470-0029
dc.identifier.issnpl
2470-0010
dc.identifier.projectpl
ROD UJ / O
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/77497
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Dodaję tylko opis bibliograficzny
dc.rights.licence
Bez licencji otwartego dostępu
dc.rights.uri*
dc.subtypepl
Article
dc.titlepl
Self-gravitating magnetized tori around black holes in general relativity
dc.title.journalpl
Physical Review. D
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
0
Views per month

No access

No Thumbnail Available