Simple view
Full metadata view
Authors
Statistics
Space-time defects and group momentum space
We study massive and massless conical defects in Minkowski and de Sitter spaces in various space-time dimensions. The energy momentum of a defect, considered as an (extended) relativistic object, is completely characterized by the holonomy of the connection associated with its space-time metric. The possible holonomies are given by Lorentz group elements, which are rotations and null rotations for massive and massless defects, respectively. In particular, if we fix the direction of propagation of a massless defect in -dimensional Minkowski space, then its space of holonomies is a maximal Abelian subgroup of the AN group, which corresponds to the well known momentum space associated with the -dimensional -Minkowski noncommutative space-time and -deformed Poincaré algebra. We also conjecture that massless defects in -dimensional de Sitter space can be analogously characterized by holonomies belonging to the same subgroup. This shows how group-valued momenta related to four-dimensional deformations of relativistic symmetries can arise in the description of motion of space-time defects.
cris.lastimport.wos | 2024-04-09T23:58:18Z | |
dc.abstract.en | We study massive and massless conical defects in Minkowski and de Sitter spaces in various space-time dimensions. The energy momentum of a defect, considered as an (extended) relativistic object, is completely characterized by the holonomy of the connection associated with its space-time metric. The possible holonomies are given by Lorentz group elements, which are rotations and null rotations for massive and massless defects, respectively. In particular, if we fix the direction of propagation of a massless defect in -dimensional Minkowski space, then its space of holonomies is a maximal Abelian subgroup of the AN group, which corresponds to the well known momentum space associated with the -dimensional -Minkowski noncommutative space-time and -deformed Poincaré algebra. We also conjecture that massless defects in -dimensional de Sitter space can be analogously characterized by holonomies belonging to the same subgroup. This shows how group-valued momenta related to four-dimensional deformations of relativistic symmetries can arise in the description of motion of space-time defects. | pl |
dc.contributor.author | Arzano, Michele | pl |
dc.contributor.author | Trześniewski, Tomasz - 106399 | pl |
dc.date.accessioned | 2019-05-15T09:51:04Z | |
dc.date.available | 2019-05-15T09:51:04Z | |
dc.date.issued | 2017 | pl |
dc.date.openaccess | 0 | |
dc.description.accesstime | w momencie opublikowania | |
dc.description.version | ostateczna wersja wydawcy | |
dc.description.volume | 2017 | pl |
dc.identifier.articleid | 4731050 | pl |
dc.identifier.doi | 10.1155/2017/4731050 | pl |
dc.identifier.eissn | 1687-7365 | pl |
dc.identifier.issn | 1687-7357 | pl |
dc.identifier.project | ROD UJ / OP | pl |
dc.identifier.uri | https://ruj.uj.edu.pl/xmlui/handle/item/74684 | |
dc.language | eng | pl |
dc.language.container | eng | pl |
dc.rights | Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa | * |
dc.rights.licence | CC-BY | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/legalcode.pl | * |
dc.share.type | otwarte czasopismo | |
dc.subtype | Article | pl |
dc.title | Space-time defects and group momentum space | pl |
dc.title.journal | Advances in High Energy Physics | pl |
dc.type | JournalArticle | pl |
dspace.entity.type | Publication |
* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.
Views
2
Views per month
Views per city
Downloads
Open Access