Lévy-Brownian motion on finite intervals : mean first passage time analysis

2006
journal article
article
132
dc.abstract.enWe present the analysis of the first passage time problem on a finite interval for the generalized Wiener process that is driven by Lévy stable noises. The complexity of the first passage time statistics (mean first passage time, cumulative first passage time distribution) is elucidated together with a discussion of the proper setup of corresponding boundary conditions that correctly yield the statistics of first passages for these non-Gaussian noises. The validity of the method is tested numerically and compared against analytical formulas when the stability index $\alpha$ approaches 2, recovering in this limit the standard results for the Fokker-Planck dynamics driven by Gaussian white noise.pl
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiegopl
dc.contributor.authorDybiec, Bartłomiej - 102110 pl
dc.contributor.authorGudowska-Nowak, Ewa - 128235 pl
dc.contributor.authorHänggi, P.pl
dc.date.accessioned2018-04-13T08:31:01Z
dc.date.available2018-04-13T08:31:01Z
dc.date.issued2006pl
dc.description.number4pl
dc.description.volume73pl
dc.identifier.articleid046104pl
dc.identifier.doi10.1103/PhysRevE.73.046104pl
dc.identifier.eissn1550-2376pl
dc.identifier.issn1539-3755pl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/53372
dc.languageengpl
dc.language.containerengpl
dc.rightsDodaję tylko opis bibliograficzny*
dc.rights.licenceBez licencji otwartego dostępu
dc.rights.uri*
dc.subtypeArticlepl
dc.titleLévy-Brownian motion on finite intervals : mean first passage time analysispl
dc.title.journalPhysical Review. E, Statistical, Nonlinear, and Soft Matter Physicspl
dc.typeJournalArticlepl
dspace.entity.typePublication
dc.abstract.enpl
We present the analysis of the first passage time problem on a finite interval for the generalized Wiener process that is driven by Lévy stable noises. The complexity of the first passage time statistics (mean first passage time, cumulative first passage time distribution) is elucidated together with a discussion of the proper setup of corresponding boundary conditions that correctly yield the statistics of first passages for these non-Gaussian noises. The validity of the method is tested numerically and compared against analytical formulas when the stability index $\alpha$ approaches 2, recovering in this limit the standard results for the Fokker-Planck dynamics driven by Gaussian white noise.
dc.affiliationpl
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiego
dc.contributor.authorpl
Dybiec, Bartłomiej - 102110
dc.contributor.authorpl
Gudowska-Nowak, Ewa - 128235
dc.contributor.authorpl
Hänggi, P.
dc.date.accessioned
2018-04-13T08:31:01Z
dc.date.available
2018-04-13T08:31:01Z
dc.date.issuedpl
2006
dc.description.numberpl
4
dc.description.volumepl
73
dc.identifier.articleidpl
046104
dc.identifier.doipl
10.1103/PhysRevE.73.046104
dc.identifier.eissnpl
1550-2376
dc.identifier.issnpl
1539-3755
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/53372
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Dodaję tylko opis bibliograficzny
dc.rights.licence
Bez licencji otwartego dostępu
dc.rights.uri*
dc.subtypepl
Article
dc.titlepl
Lévy-Brownian motion on finite intervals : mean first passage time analysis
dc.title.journalpl
Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
0
Views per month

No access

No Thumbnail Available