Complex geodesics in convex tube domains II

2016
journal article
article
3
cris.lastimport.wos2024-04-09T21:51:18Z
dc.abstract.enComplex geodesics are fundamental constructs for complex analysis and as such constitute one of the most vital research objects within this discipline. In this paper, we formulate a rigorous description, expressed in terms of geometric properties of a domain, of all complex geodesics in a convex tube domain in Cn containing no complex affine lines. Next, we illustrate the obtained result by establishing a set of formulas stipulating a necessary condition for extremal mappings with respect to the Lempert function and the Kobayashi-Royden metric in a large class of bounded, pseudoconvex, complete Reinhardt domains: for all of them in C2 and for those in Cn whose logarithmic image is strictly convex in the geometric sense.pl
dc.affiliationWydział Matematyki i Informatykipl
dc.contributor.authorZając, Sylwester - 107388 pl
dc.date.accessioned2016-12-06T10:46:12Z
dc.date.available2016-12-06T10:46:12Z
dc.date.issued2016pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number6pl
dc.description.physical1865-1887pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume195pl
dc.identifier.doi10.1007/s10231-015-0537-4pl
dc.identifier.eissn1618-1891pl
dc.identifier.issn0373-3114pl
dc.identifier.urihttp://ruj.uj.edu.pl/xmlui/handle/item/33301
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 3.0 Polska*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/legalcode*
dc.share.typeinne
dc.subject.encomplex geodesicpl
dc.subject.entube domainpl
dc.subject.enconvex domainpl
dc.subject.enReinhardt domainpl
dc.subject.enextremal mappingpl
dc.subtypeArticlepl
dc.titleComplex geodesics in convex tube domains IIpl
dc.title.journalAnnali di Matematica Pura ed Applicatapl
dc.typeJournalArticlepl
dspace.entity.typePublication
cris.lastimport.wos
2024-04-09T21:51:18Z
dc.abstract.enpl
Complex geodesics are fundamental constructs for complex analysis and as such constitute one of the most vital research objects within this discipline. In this paper, we formulate a rigorous description, expressed in terms of geometric properties of a domain, of all complex geodesics in a convex tube domain in Cn containing no complex affine lines. Next, we illustrate the obtained result by establishing a set of formulas stipulating a necessary condition for extremal mappings with respect to the Lempert function and the Kobayashi-Royden metric in a large class of bounded, pseudoconvex, complete Reinhardt domains: for all of them in C2 and for those in Cn whose logarithmic image is strictly convex in the geometric sense.
dc.affiliationpl
Wydział Matematyki i Informatyki
dc.contributor.authorpl
Zając, Sylwester - 107388
dc.date.accessioned
2016-12-06T10:46:12Z
dc.date.available
2016-12-06T10:46:12Z
dc.date.issuedpl
2016
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.numberpl
6
dc.description.physicalpl
1865-1887
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
195
dc.identifier.doipl
10.1007/s10231-015-0537-4
dc.identifier.eissnpl
1618-1891
dc.identifier.issnpl
0373-3114
dc.identifier.uri
http://ruj.uj.edu.pl/xmlui/handle/item/33301
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa 3.0 Polska
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/3.0/pl/legalcode
dc.share.type
inne
dc.subject.enpl
complex geodesic
dc.subject.enpl
tube domain
dc.subject.enpl
convex domain
dc.subject.enpl
Reinhardt domain
dc.subject.enpl
extremal mapping
dc.subtypepl
Article
dc.titlepl
Complex geodesics in convex tube domains II
dc.title.journalpl
Annali di Matematica Pura ed Applicata
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
0
Views per month
Downloads
Complex geodesics in convex tube domains II.pdf
6