Training normalizing flows with computationally intensive target probability distributions

2024
journal article
article
3
cris.lastimport.wos2024-04-10T00:26:10Z
dc.abstract.enMachine learning techniques, in particular the so-called normalizing flows, are becoming increasingly popular in the context of Monte Carlo simulations as they can effectively approximate target probability distributions. In the case of lattice field theories (LFT) the target distribution is given by the exponential of the action. The common loss function's gradient estimator based on the "reparametrization trick" requires the calculation of the derivative of the action with respect to the fields. This can present a significant computational cost for complicated, non-local actions like e.g. fermionic action in QCD. In this contribution, we propose an estimator for normalizing flows based on the REINFORCE algorithm that avoids this issue. We apply it to two dimensional Schwinger model with Wilson fermions at criticality and show that it is up to ten times faster in terms of the wall-clock time as well as requiring up to 30% less memory than the reparameterization trick estimator. It is also more numerically stable allowing for single precision calculations and the use of half-float tensor cores. We present an in-depth analysis of the origins of those improvements. We believe that these benefits will appear also outside the realm of the LFT, in each case where the target probability distribution is computationally intensive.pl
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki Teoretycznejpl
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Informatyki Stosowanejpl
dc.contributor.authorBiałas, Piotr - 127296 pl
dc.contributor.authorKorcyl, Piotr - 125645 pl
dc.contributor.authorStebel, Tomasz - 150140 pl
dc.date.accessioned2024-02-22T17:22:31Z
dc.date.available2024-02-22T17:22:31Z
dc.date.issued2024pl
dc.description.volume298pl
dc.identifier.articleid109094pl
dc.identifier.doi10.1016/j.cpc.2024.109094pl
dc.identifier.eissn1879-2944pl
dc.identifier.issn0010-4655pl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/327368
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa*
dc.rights.licenceBez licencji otwartego dostępu
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl*
dc.subject.enMonte-carlopl
dc.subject.ennormalizing flowspl
dc.subject.enlattice field theorypl
dc.subject.enmachine learningpl
dc.subtypeArticlepl
dc.titleTraining normalizing flows with computationally intensive target probability distributionspl
dc.title.journalComputer Physics Communicationspl
dc.typeJournalArticlepl
dspace.entity.typePublication
cris.lastimport.wos
2024-04-10T00:26:10Z
dc.abstract.enpl
Machine learning techniques, in particular the so-called normalizing flows, are becoming increasingly popular in the context of Monte Carlo simulations as they can effectively approximate target probability distributions. In the case of lattice field theories (LFT) the target distribution is given by the exponential of the action. The common loss function's gradient estimator based on the "reparametrization trick" requires the calculation of the derivative of the action with respect to the fields. This can present a significant computational cost for complicated, non-local actions like e.g. fermionic action in QCD. In this contribution, we propose an estimator for normalizing flows based on the REINFORCE algorithm that avoids this issue. We apply it to two dimensional Schwinger model with Wilson fermions at criticality and show that it is up to ten times faster in terms of the wall-clock time as well as requiring up to 30% less memory than the reparameterization trick estimator. It is also more numerically stable allowing for single precision calculations and the use of half-float tensor cores. We present an in-depth analysis of the origins of those improvements. We believe that these benefits will appear also outside the realm of the LFT, in each case where the target probability distribution is computationally intensive.
dc.affiliationpl
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki Teoretycznej
dc.affiliationpl
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Informatyki Stosowanej
dc.contributor.authorpl
Białas, Piotr - 127296
dc.contributor.authorpl
Korcyl, Piotr - 125645
dc.contributor.authorpl
Stebel, Tomasz - 150140
dc.date.accessioned
2024-02-22T17:22:31Z
dc.date.available
2024-02-22T17:22:31Z
dc.date.issuedpl
2024
dc.description.volumepl
298
dc.identifier.articleidpl
109094
dc.identifier.doipl
10.1016/j.cpc.2024.109094
dc.identifier.eissnpl
1879-2944
dc.identifier.issnpl
0010-4655
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/327368
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
Bez licencji otwartego dostępu
dc.rights.uri*
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.subject.enpl
Monte-carlo
dc.subject.enpl
normalizing flows
dc.subject.enpl
lattice field theory
dc.subject.enpl
machine learning
dc.subtypepl
Article
dc.titlepl
Training normalizing flows with computationally intensive target probability distributions
dc.title.journalpl
Computer Physics Communications
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
25
Views per month
Views per city
Ashburn
7
Krakow
6
Downloads
bialas_korcyl_stebel_training_normalizing_flows_with_computationally_2024.pdf
35
CPC_gradients_revised.pdf
3