Detecting clouds in multispectral satellite images using quantum-kernel support vector machines

2023
journal article
article
16
dc.abstract.enSupport vector machines (SVMs) are well-established classifiers that are effectively deployed in an array of classification tasks. In this article, we consider extending classical SVMs with quantum kernels and applying them to satellite data analysis. The design and implementation of SVMs with quantum kernels (hybrid SVMs) are presented. Here, the pixels are mapped to the Hilbert space using a family of parameterized quantum feature maps (related to quantum kernels). The parameters are optimized to maximize the kernel-target alignment. The quantum kernels have been selected such that they enable the analysis of numerous relevant properties while being able to simulate them with classical computers on a real-life large-scale dataset. Specifically, we approach the problem of cloud detection in the multispectral satellite imagery, which is one of the pivotal steps in both on-the-ground and on-board satellite image analysis processing chains. The experiments performed over the benchmark Landsat-8 multispectral dataset revealed that the simulated hybrid SVM successfully classifies satellite images with accuracy comparable to the classical SVM with the radial basis function kernel for large datasets. Interestingly, for large datasets, the high accuracy was also observed for the simple quantum kernels, lacking quantum entanglement.pl
dc.affiliationSzkoła Doktorska Nauk Ścisłych i Przyrodniczychpl
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki Teoretycznejpl
dc.contributor.authorMiroszewski, Artur - 206642 pl
dc.contributor.authorMielczarek, Jakub - 103621 pl
dc.contributor.authorCzelusta, Grzegorz - 390194 pl
dc.contributor.authorSzczepanek, Filippl
dc.contributor.authorGrabowski, Bartoszpl
dc.contributor.authorLe Saux, Bernardpl
dc.contributor.authorNalepa, Jakubpl
dc.date.accessioned2023-11-03T14:56:51Z
dc.date.available2023-11-03T14:56:51Z
dc.date.issued2023pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.physical7601-7613pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume16pl
dc.identifier.doi10.1109/JSTARS.2023.3304122pl
dc.identifier.eissn2151-1535pl
dc.identifier.issn1939-1404pl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/322895
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 Międzynarodowa*
dc.rights.licenceCC-BY-NC-ND
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.pl*
dc.share.typeotwarte czasopismo
dc.subject.encloud detectionpl
dc.subject.enkernel methodspl
dc.subject.enquantum machine learning (QML)pl
dc.subject.enremote sensingpl
dc.subtypeArticlepl
dc.titleDetecting clouds in multispectral satellite images using quantum-kernel support vector machinespl
dc.title.journalIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensingpl
dc.typeJournalArticlepl
dspace.entity.typePublication
dc.abstract.enpl
Support vector machines (SVMs) are well-established classifiers that are effectively deployed in an array of classification tasks. In this article, we consider extending classical SVMs with quantum kernels and applying them to satellite data analysis. The design and implementation of SVMs with quantum kernels (hybrid SVMs) are presented. Here, the pixels are mapped to the Hilbert space using a family of parameterized quantum feature maps (related to quantum kernels). The parameters are optimized to maximize the kernel-target alignment. The quantum kernels have been selected such that they enable the analysis of numerous relevant properties while being able to simulate them with classical computers on a real-life large-scale dataset. Specifically, we approach the problem of cloud detection in the multispectral satellite imagery, which is one of the pivotal steps in both on-the-ground and on-board satellite image analysis processing chains. The experiments performed over the benchmark Landsat-8 multispectral dataset revealed that the simulated hybrid SVM successfully classifies satellite images with accuracy comparable to the classical SVM with the radial basis function kernel for large datasets. Interestingly, for large datasets, the high accuracy was also observed for the simple quantum kernels, lacking quantum entanglement.
dc.affiliationpl
Szkoła Doktorska Nauk Ścisłych i Przyrodniczych
dc.affiliationpl
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki Teoretycznej
dc.contributor.authorpl
Miroszewski, Artur - 206642
dc.contributor.authorpl
Mielczarek, Jakub - 103621
dc.contributor.authorpl
Czelusta, Grzegorz - 390194
dc.contributor.authorpl
Szczepanek, Filip
dc.contributor.authorpl
Grabowski, Bartosz
dc.contributor.authorpl
Le Saux, Bernard
dc.contributor.authorpl
Nalepa, Jakub
dc.date.accessioned
2023-11-03T14:56:51Z
dc.date.available
2023-11-03T14:56:51Z
dc.date.issuedpl
2023
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.physicalpl
7601-7613
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
16
dc.identifier.doipl
10.1109/JSTARS.2023.3304122
dc.identifier.eissnpl
2151-1535
dc.identifier.issnpl
1939-1404
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/322895
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 Międzynarodowa
dc.rights.licence
CC-BY-NC-ND
dc.rights.uri*
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.pl
dc.share.type
otwarte czasopismo
dc.subject.enpl
cloud detection
dc.subject.enpl
kernel methods
dc.subject.enpl
quantum machine learning (QML)
dc.subject.enpl
remote sensing
dc.subtypepl
Article
dc.titlepl
Detecting clouds in multispectral satellite images using quantum-kernel support vector machines
dc.title.journalpl
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.