Quantum correlations on quantum spaces

2023
journal article
article
2
dc.abstract.enFor given quantum (non-commutative) spaces $\mathbb{P}$ and $\mathbb{O}$, we study the quantum space of maps $\mathbb{M}_{\mathbb{P}, \mathbb{O}}$, from $\mathbb{P}$ to $\mathbb{O}$. In case of finite quantum spaces, these objects turn out to be behind a large class of maps which generalize the classical qc-correlations known from quantum information theory to the setting of quantum input and output sets. We prove various operator algebraic properties of the C* -algebras C($\mathbb{M}_{\mathbb{P}, \mathbb{O}}$) such as the lifting property and residual finite dimensionality. Inside C($\mathbb{M}_{\mathbb{P}, \mathbb{O}}$) we construct a universal operator system $\mathbb{S}_{\mathbb{P}, \mathbb{O}}$ related to $\mathbb{P}$ and $\mathbb{O}$, and show, among other things, that the embedding $\mathbb{S}_{\mathbb{P}, \mathbb{O}} \subset$ C($\mathbb{M}_{\mathbb{P}, \mathbb{O}}$) is hyperrigid and has another interesting property, which we call the strong extension property. Furthermore, C($\mathbb{M}_{\mathbb{P}, \mathbb{O}}$) is the C* -envelope of $\mathbb{S}_{\mathbb{P}, \mathbb{O}}$ and a large class of non-signalling correlations on the quantum sets $\mathbb{P}$ and $\mathbb{O}$ arise from states on C($\mathbb{M}_{\mathbb{P}, \mathbb{O}}$) ⊗$_{max}$ C($\mathbb{M}_{\mathbb{P}, \mathbb{O}}$) as well as states on the commuting tensor product $\mathbb{S}_{\mathbb{P}, \mathbb{O}}$ ⊗$_{c} \mathbb{S}_{\mathbb{P}, \mathbb{O}}$. Finally, we introduce and study the notion of a synchronous correlation with quantum input and output sets and prove several characterizations of such correlations and their relation to traces on C($\mathbb{M}_{\mathbb{P}, \mathbb{O}}$)pl
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanejpl
dc.contributor.authorBochniak, Arkadiusz - 233886 pl
dc.contributor.authorKasprzak, Pawełpl
dc.contributor.authorSołtan, Piotr M.pl
dc.date.accessioned2023-09-25T13:40:51Z
dc.date.available2023-09-25T13:40:51Z
dc.date.issued2023pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number14pl
dc.description.physical12400-12440pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume2023pl
dc.identifier.doi10.1093/imrn/rnac139pl
dc.identifier.eissn1687-0247pl
dc.identifier.issn1073-7928pl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/319720
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl*
dc.share.typeinne
dc.subtypeArticlepl
dc.titleQuantum correlations on quantum spacespl
dc.title.journalInternational Mathematics Research Noticespl
dc.typeJournalArticlepl
dspace.entity.typePublication
dc.abstract.enpl
For given quantum (non-commutative) spaces $\mathbb{P}$ and $\mathbb{O}$, we study the quantum space of maps $\mathbb{M}_{\mathbb{P}, \mathbb{O}}$, from $\mathbb{P}$ to $\mathbb{O}$. In case of finite quantum spaces, these objects turn out to be behind a large class of maps which generalize the classical qc-correlations known from quantum information theory to the setting of quantum input and output sets. We prove various operator algebraic properties of the C* -algebras C($\mathbb{M}_{\mathbb{P}, \mathbb{O}}$) such as the lifting property and residual finite dimensionality. Inside C($\mathbb{M}_{\mathbb{P}, \mathbb{O}}$) we construct a universal operator system $\mathbb{S}_{\mathbb{P}, \mathbb{O}}$ related to $\mathbb{P}$ and $\mathbb{O}$, and show, among other things, that the embedding $\mathbb{S}_{\mathbb{P}, \mathbb{O}} \subset$ C($\mathbb{M}_{\mathbb{P}, \mathbb{O}}$) is hyperrigid and has another interesting property, which we call the strong extension property. Furthermore, C($\mathbb{M}_{\mathbb{P}, \mathbb{O}}$) is the C* -envelope of $\mathbb{S}_{\mathbb{P}, \mathbb{O}}$ and a large class of non-signalling correlations on the quantum sets $\mathbb{P}$ and $\mathbb{O}$ arise from states on C($\mathbb{M}_{\mathbb{P}, \mathbb{O}}$) ⊗$_{max}$ C($\mathbb{M}_{\mathbb{P}, \mathbb{O}}$) as well as states on the commuting tensor product $\mathbb{S}_{\mathbb{P}, \mathbb{O}}$ ⊗$_{c} \mathbb{S}_{\mathbb{P}, \mathbb{O}}$. Finally, we introduce and study the notion of a synchronous correlation with quantum input and output sets and prove several characterizations of such correlations and their relation to traces on C($\mathbb{M}_{\mathbb{P}, \mathbb{O}}$)
dc.affiliationpl
Wydział Fizyki, Astronomii i Informatyki Stosowanej
dc.contributor.authorpl
Bochniak, Arkadiusz - 233886
dc.contributor.authorpl
Kasprzak, Paweł
dc.contributor.authorpl
Sołtan, Piotr M.
dc.date.accessioned
2023-09-25T13:40:51Z
dc.date.available
2023-09-25T13:40:51Z
dc.date.issuedpl
2023
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.numberpl
14
dc.description.physicalpl
12400-12440
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
2023
dc.identifier.doipl
10.1093/imrn/rnac139
dc.identifier.eissnpl
1687-0247
dc.identifier.issnpl
1073-7928
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/319720
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
inne
dc.subtypepl
Article
dc.titlepl
Quantum correlations on quantum spaces
dc.title.journalpl
International Mathematics Research Notices
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
3
Views per month
Views per city
Ashburn
2
Downloads
bochniak_kasprzak_soltan_quantum_correlations_on_quantum_spaces_2023.pdf
12