Simple view
Full metadata view
Authors
Statistics
Quantum correlations on quantum spaces
For given quantum (non-commutative) spaces
dc.abstract.en | For given quantum (non-commutative) spaces $\mathbb{P}$ and $\mathbb{O}$, we study the quantum space of maps $\mathbb{M}_{\mathbb{P}, \mathbb{O}}$, from $\mathbb{P}$ to $\mathbb{O}$. In case of finite quantum spaces, these objects turn out to be behind a large class of maps which generalize the classical qc-correlations known from quantum information theory to the setting of quantum input and output sets. We prove various operator algebraic properties of the C* -algebras C($\mathbb{M}_{\mathbb{P}, \mathbb{O}}$) such as the lifting property and residual finite dimensionality. Inside C($\mathbb{M}_{\mathbb{P}, \mathbb{O}}$) we construct a universal operator system $\mathbb{S}_{\mathbb{P}, \mathbb{O}}$ related to $\mathbb{P}$ and $\mathbb{O}$, and show, among other things, that the embedding $\mathbb{S}_{\mathbb{P}, \mathbb{O}} \subset$ C($\mathbb{M}_{\mathbb{P}, \mathbb{O}}$) is hyperrigid and has another interesting property, which we call the strong extension property. Furthermore, C($\mathbb{M}_{\mathbb{P}, \mathbb{O}}$) is the C* -envelope of $\mathbb{S}_{\mathbb{P}, \mathbb{O}}$ and a large class of non-signalling correlations on the quantum sets $\mathbb{P}$ and $\mathbb{O}$ arise from states on C($\mathbb{M}_{\mathbb{P}, \mathbb{O}}$) ⊗$_{max}$ C($\mathbb{M}_{\mathbb{P}, \mathbb{O}}$) as well as states on the commuting tensor product $\mathbb{S}_{\mathbb{P}, \mathbb{O}}$ ⊗$_{c} \mathbb{S}_{\mathbb{P}, \mathbb{O}}$. Finally, we introduce and study the notion of a synchronous correlation with quantum input and output sets and prove several characterizations of such correlations and their relation to traces on C($\mathbb{M}_{\mathbb{P}, \mathbb{O}}$) | pl |
dc.affiliation | Wydział Fizyki, Astronomii i Informatyki Stosowanej | pl |
dc.contributor.author | Bochniak, Arkadiusz - 233886 | pl |
dc.contributor.author | Kasprzak, Paweł | pl |
dc.contributor.author | Sołtan, Piotr M. | pl |
dc.date.accessioned | 2023-09-25T13:40:51Z | |
dc.date.available | 2023-09-25T13:40:51Z | |
dc.date.issued | 2023 | pl |
dc.date.openaccess | 0 | |
dc.description.accesstime | w momencie opublikowania | |
dc.description.number | 14 | pl |
dc.description.physical | 12400-12440 | pl |
dc.description.version | ostateczna wersja wydawcy | |
dc.description.volume | 2023 | pl |
dc.identifier.doi | 10.1093/imrn/rnac139 | pl |
dc.identifier.eissn | 1687-0247 | pl |
dc.identifier.issn | 1073-7928 | pl |
dc.identifier.uri | https://ruj.uj.edu.pl/xmlui/handle/item/319720 | |
dc.language | eng | pl |
dc.language.container | eng | pl |
dc.rights | Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa | * |
dc.rights.licence | CC-BY | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/legalcode.pl | * |
dc.share.type | inne | |
dc.subtype | Article | pl |
dc.title | Quantum correlations on quantum spaces | pl |
dc.title.journal | International Mathematics Research Notices | pl |
dc.type | JournalArticle | pl |
dspace.entity.type | Publication |