On the Alesker-Verbitsky conjecture on hyperKähler manifolds

2023
journal article
article
8
dc.abstract.enWe solve the quaternionic Monge-Ampère equation on hyperKähler manifolds. In this way we prove the ansatz for the conjecture raised by Alesker and Verbitsky claiming that this equation should be solvable on any hyperKähler with torsion manifold, at least when the canonical bundle is trivial holomorphically. The novelty in our approach is that we do not assume any flatness of the underlying hypercomplex structure which was the case in all the approaches for the higher order a priori estimates so far. The resulting Calabi–Yau type theorem for HKT metrics is discussed.pl
dc.affiliationWydział Matematyki i Informatyki : Instytut Matematykipl
dc.contributor.authorDinew, Sławomir - 200069 pl
dc.contributor.authorSroka, Marcin - 216831 pl
dc.date.accessioned2023-07-27T06:35:20Z
dc.date.available2023-07-27T06:35:20Z
dc.date.issued2023pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.physical875-911pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume33pl
dc.identifier.doi10.1007/s00039-023-00648-5pl
dc.identifier.eissn1420-8970pl
dc.identifier.issn1016-443Xpl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/317251
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl*
dc.share.typeinne
dc.subject.enquaternionic Monge–Ampère equationpl
dc.subject.enCalabi–Yau type theorempl
dc.subject.enhyperKähler metricspl
dc.subject.enHKT metricspl
dc.subject.enhyperhermitian manifoldspl
dc.subtypeArticlepl
dc.titleOn the Alesker-Verbitsky conjecture on hyperKähler manifoldspl
dc.title.journalGeometric and Functional Analysispl
dc.typeJournalArticlepl
dspace.entity.typePublication
dc.abstract.enpl
We solve the quaternionic Monge-Ampère equation on hyperKähler manifolds. In this way we prove the ansatz for the conjecture raised by Alesker and Verbitsky claiming that this equation should be solvable on any hyperKähler with torsion manifold, at least when the canonical bundle is trivial holomorphically. The novelty in our approach is that we do not assume any flatness of the underlying hypercomplex structure which was the case in all the approaches for the higher order a priori estimates so far. The resulting Calabi–Yau type theorem for HKT metrics is discussed.
dc.affiliationpl
Wydział Matematyki i Informatyki : Instytut Matematyki
dc.contributor.authorpl
Dinew, Sławomir - 200069
dc.contributor.authorpl
Sroka, Marcin - 216831
dc.date.accessioned
2023-07-27T06:35:20Z
dc.date.available
2023-07-27T06:35:20Z
dc.date.issuedpl
2023
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.physicalpl
875-911
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
33
dc.identifier.doipl
10.1007/s00039-023-00648-5
dc.identifier.eissnpl
1420-8970
dc.identifier.issnpl
1016-443X
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/317251
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
inne
dc.subject.enpl
quaternionic Monge–Ampère equation
dc.subject.enpl
Calabi–Yau type theorem
dc.subject.enpl
hyperKähler metrics
dc.subject.enpl
HKT metrics
dc.subject.enpl
hyperhermitian manifolds
dc.subtypepl
Article
dc.titlepl
On the Alesker-Verbitsky conjecture on hyperKähler manifolds
dc.title.journalpl
Geometric and Functional Analysis
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.