Simple view
Full metadata view
Authors
Statistics
On the Alesker-Verbitsky conjecture on hyperKähler manifolds
quaternionic Monge–Ampère equation
Calabi–Yau type theorem
hyperKähler metrics
HKT metrics
hyperhermitian manifolds
We solve the quaternionic Monge-Ampère equation on hyperKähler manifolds. In this way we prove the ansatz for the conjecture raised by Alesker and Verbitsky claiming that this equation should be solvable on any hyperKähler with torsion manifold, at least when the canonical bundle is trivial holomorphically. The novelty in our approach is that we do not assume any flatness of the underlying hypercomplex structure which was the case in all the approaches for the higher order a priori estimates so far. The resulting Calabi–Yau type theorem for HKT metrics is discussed.
dc.abstract.en | We solve the quaternionic Monge-Ampère equation on hyperKähler manifolds. In this way we prove the ansatz for the conjecture raised by Alesker and Verbitsky claiming that this equation should be solvable on any hyperKähler with torsion manifold, at least when the canonical bundle is trivial holomorphically. The novelty in our approach is that we do not assume any flatness of the underlying hypercomplex structure which was the case in all the approaches for the higher order a priori estimates so far. The resulting Calabi–Yau type theorem for HKT metrics is discussed. | pl |
dc.affiliation | Wydział Matematyki i Informatyki : Instytut Matematyki | pl |
dc.contributor.author | Dinew, Sławomir - 200069 | pl |
dc.contributor.author | Sroka, Marcin - 216831 | pl |
dc.date.accessioned | 2023-07-27T06:35:20Z | |
dc.date.available | 2023-07-27T06:35:20Z | |
dc.date.issued | 2023 | pl |
dc.date.openaccess | 0 | |
dc.description.accesstime | w momencie opublikowania | |
dc.description.physical | 875-911 | pl |
dc.description.version | ostateczna wersja wydawcy | |
dc.description.volume | 33 | pl |
dc.identifier.doi | 10.1007/s00039-023-00648-5 | pl |
dc.identifier.eissn | 1420-8970 | pl |
dc.identifier.issn | 1016-443X | pl |
dc.identifier.uri | https://ruj.uj.edu.pl/xmlui/handle/item/317251 | |
dc.language | eng | pl |
dc.language.container | eng | pl |
dc.rights | Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa | * |
dc.rights.licence | CC-BY | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/legalcode.pl | * |
dc.share.type | inne | |
dc.subject.en | quaternionic Monge–Ampère equation | pl |
dc.subject.en | Calabi–Yau type theorem | pl |
dc.subject.en | hyperKähler metrics | pl |
dc.subject.en | HKT metrics | pl |
dc.subject.en | hyperhermitian manifolds | pl |
dc.subtype | Article | pl |
dc.title | On the Alesker-Verbitsky conjecture on hyperKähler manifolds | pl |
dc.title.journal | Geometric and Functional Analysis | pl |
dc.type | JournalArticle | pl |
dspace.entity.type | Publication |