Fully automated clinical target volume segmentation for glioblastoma radiotherapy using a deep convolutional neural network

2023
journal article
article
2
cris.lastimport.wos2024-04-10T02:19:40Z
dc.abstract.enPurpose: Target volume delineation is a crucial step prior to radiotherapy planning in radiotherapy for glioblastoma. This step is performed manually, which is time-consuming and prone to intra- and inter-rater variabilities. Therefore, the purpose of this study is to evaluate a deep convolutional neural network (CNN) model for automatic segmentation of clinical target volume (CTV) in glioblastoma patients. Material and methods: In this study, the modified Segmentation-Net (SegNet) model with deep supervision and residual-based skip connection mechanism was trained on 259 glioblastoma patients from the Multimodal Brain Tumour Image Segmentation Benchmark (BraTS) 2019 Challenge dataset for segmentation of gross tumour volume (GTV). Then, the pre-trained CNN model was fine-tuned with an independent clinical dataset (n = 37) to perform the CTV segmentation. In the process of fine-tuning, to generate a CT segmentation mask, both CT and MRI scans were simultaneously used as input data. The performance of the CNN model in terms of segmentation accuracy was evaluated on an independent clinical test dataset (n = 15) using the Dice Similarity Coefficient (DSC) and Hausdorff distance. The impact of auto-segmented CTV definition on dosimetry was also analysed. Results: The proposed model achieved the segmentation results with a DSC of 89.60 ± 3.56% and Hausdorff distance of 1.49 ± 0.65 mm. A statistically significant difference was found for the Dmin and Dmax of the CTV between manually and automatically planned doses. Conclusions: The results of our study suggest that our CNN-based auto-contouring system can be used for segmentation of CTVs to facilitate the brain tumour radiotherapy workflow.pl
dc.contributor.authorSadeghi, Sogandpl
dc.contributor.authorFarzin, Mostafapl
dc.contributor.authorGholami, Somayehpl
dc.date.accessioned2023-05-04T07:33:08Z
dc.date.available2023-05-04T07:33:08Z
dc.date.issued2023pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.additionalBibliogr. s. e39-e40pl
dc.description.physicale31-e40pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume88pl
dc.identifier.doi10.5114/pjr.2023.124434pl
dc.identifier.eissn1899-0967pl
dc.identifier.issn1733-134Xpl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/311018
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 Międzynarodowa*
dc.rights.licenceCC-BY-NC-ND
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.pl*
dc.share.typeotwarte czasopismo
dc.subject.endeep learningpl
dc.subject.enconvolutional neural networkspl
dc.subject.enbrain tumour segmentationpl
dc.subject.enclinical target volumepl
dc.subject.entreatment planningpl
dc.subtypeArticlepl
dc.titleFully automated clinical target volume segmentation for glioblastoma radiotherapy using a deep convolutional neural networkpl
dc.title.journalPolish Journal of Radiologypl
dc.typeJournalArticlepl
dspace.entity.typePublication
cris.lastimport.wos
2024-04-10T02:19:40Z
dc.abstract.enpl
Purpose: Target volume delineation is a crucial step prior to radiotherapy planning in radiotherapy for glioblastoma. This step is performed manually, which is time-consuming and prone to intra- and inter-rater variabilities. Therefore, the purpose of this study is to evaluate a deep convolutional neural network (CNN) model for automatic segmentation of clinical target volume (CTV) in glioblastoma patients. Material and methods: In this study, the modified Segmentation-Net (SegNet) model with deep supervision and residual-based skip connection mechanism was trained on 259 glioblastoma patients from the Multimodal Brain Tumour Image Segmentation Benchmark (BraTS) 2019 Challenge dataset for segmentation of gross tumour volume (GTV). Then, the pre-trained CNN model was fine-tuned with an independent clinical dataset (n = 37) to perform the CTV segmentation. In the process of fine-tuning, to generate a CT segmentation mask, both CT and MRI scans were simultaneously used as input data. The performance of the CNN model in terms of segmentation accuracy was evaluated on an independent clinical test dataset (n = 15) using the Dice Similarity Coefficient (DSC) and Hausdorff distance. The impact of auto-segmented CTV definition on dosimetry was also analysed. Results: The proposed model achieved the segmentation results with a DSC of 89.60 ± 3.56% and Hausdorff distance of 1.49 ± 0.65 mm. A statistically significant difference was found for the Dmin and Dmax of the CTV between manually and automatically planned doses. Conclusions: The results of our study suggest that our CNN-based auto-contouring system can be used for segmentation of CTVs to facilitate the brain tumour radiotherapy workflow.
dc.contributor.authorpl
Sadeghi, Sogand
dc.contributor.authorpl
Farzin, Mostafa
dc.contributor.authorpl
Gholami, Somayeh
dc.date.accessioned
2023-05-04T07:33:08Z
dc.date.available
2023-05-04T07:33:08Z
dc.date.issuedpl
2023
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.additionalpl
Bibliogr. s. e39-e40
dc.description.physicalpl
e31-e40
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
88
dc.identifier.doipl
10.5114/pjr.2023.124434
dc.identifier.eissnpl
1899-0967
dc.identifier.issnpl
1733-134X
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/311018
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 Międzynarodowa
dc.rights.licence
CC-BY-NC-ND
dc.rights.uri*
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.pl
dc.share.type
otwarte czasopismo
dc.subject.enpl
deep learning
dc.subject.enpl
convolutional neural networks
dc.subject.enpl
brain tumour segmentation
dc.subject.enpl
clinical target volume
dc.subject.enpl
treatment planning
dc.subtypepl
Article
dc.titlepl
Fully automated clinical target volume segmentation for glioblastoma radiotherapy using a deep convolutional neural network
dc.title.journalpl
Polish Journal of Radiology
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
7
Views per month
Views per city
Ashburn
2
Dobra
1
San Jose
1
Warsaw
1
Downloads
sadeghi_farzin_gholami_fully_automated_clinical_target_volume_segmentation_for_glioblastoma_2023.pdf
12