Variabilities in global DNA methylation and -sheet richness establish spectroscopic landscapes among subtypes of pancreatic cancer

2023
journal article
article
6
dc.abstract.enPurpose: Knowledge about pancreatic cancer (PC) biology has been growing rapidly in recent decades. Nevertheless, the survival of PC patients has not greatly improved. The development of a novel methodology suitable for deep investigation of the nature of PC tumors is of great importance. Molecular imaging techniques, such as Fourier transform infrared (FTIR) spectroscopy and Raman hyperspectral mapping (RHM) combined with advanced multivariate data analysis, were useful in studying the biochemical composition of PC tissue. Methods: Here, we evaluated the potential of molecular imaging in differentiating three groups of PC tumors, which originate from different precursor lesions. Specifically, we comprehensively investigated adenocarcinomas (ACs): conventional ductal AC, intraductal papillary mucinous carcinoma, and ampulla of Vater AC. FTIR microspectroscopy and RHM maps of 24 PC tissue slides were obtained, and comprehensive advanced statistical analyses, such as hierarchical clustering and nonnegative matrix factorization, were performed on a total of 211,355 Raman spectra. Additionally, we employed deep learning technology for the same task of PC subtyping to enable automation. The so-called convolutional neural network (CNN) was trained to recognize spectra specific to each PC group and then employed to generate CNN-prediction-based tissue maps. To identify the DNA methylation spectral markers, we used differently methylated, isolated DNA and compared the observed spectral differences with the results obtained from cellular nuclei regions of PC tissues. Results: The results showed significant differences among cancer tissues of the studied PC groups. The main findings are the varying content of β-sheet-rich proteins within the PC cells and alterations in the relative DNA methylation level. Our CNN model efficiently differentiated PC groups with 94% accuracy. The usage of CNN in the classification task did not require Raman spectral data preprocessing and eliminated the need for extensive knowledge of statistical methodologies. Conclusions: Molecular spectroscopy combined with CNN technology is a powerful tool for PC detection and subtyping. The molecular fingerprint of DNA methylation and β-sheet cytoplasmic proteins established by our results is different for the main PC groups and allowed the subtyping of pancreatic tumors, which can improve patient management and increase their survival. Our observations are of key importance in understanding the variability of PC and allow translation of the methodology into clinical practice by utilizing liquid biopsy testing.pl
dc.affiliationWydział Lekarski : Zakład Neuropatologiipl
dc.affiliationWydział Lekarski : Zakład Patomorfologii Klinicznej i Doświadczalnejpl
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiegopl
dc.affiliationSzkoła Doktorska Nauk Ścisłych i Przyrodniczychpl
dc.cm.id111343pl
dc.cm.idOmegaUJCM88af441f334b46cb8c144c12a9a2cea0pl
dc.contributor.authorSzymoński, Krzysztof - 140864 pl
dc.contributor.authorLipiec, Ewelina - 103664 pl
dc.contributor.authorSofińska, Kamila - 349863 pl
dc.contributor.authorSkirlińska-Nosek, Katarzyna - 426573 pl
dc.contributor.authorCzaja, Michał - 367610 pl
dc.contributor.authorSeweryn, Sara - 389877 pl
dc.contributor.authorWilkosz, Natalia - 169289 pl
dc.contributor.authorBirarda, Giovannipl
dc.contributor.authorPiccirilli, Federicapl
dc.contributor.authorVaccari, Lisapl
dc.contributor.authorChmura, Łukasz - 200508 pl
dc.contributor.authorSzpor, Joanna - 133600 pl
dc.contributor.authorAdamek, Dariusz - 128411 pl
dc.contributor.authorSzymoński, Marek - 132296 pl
dc.date.accession2023-03-09pl
dc.date.accessioned2023-04-13T08:04:54Z
dc.date.available2023-04-13T08:04:54Z
dc.date.issued2023pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.additionalOnline First 2023-02-09pl
dc.description.number6pl
dc.description.physical1792-1810pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume50pl
dc.identifier.doi10.1007/s00259-023-06121-7pl
dc.identifier.eissn1619-7089pl
dc.identifier.issn1619-7070pl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/310296
dc.identifier.weblinkhttps://link.springer.com/article/10.1007/s00259-023-06121-7pl
dc.languageengpl
dc.language.containerengpl
dc.pbn.affiliationDziedzina nauk medycznych i nauk o zdrowiu : nauki medycznepl
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl*
dc.share.typeOtwarte czasopismo
dc.subject.enDNA methylationpl
dc.subject.enbeta-sheet richnesspl
dc.subject.enpancreatic cancer subtypingpl
dc.subject.enraman spectroscopypl
dc.subject.enmolecular imagingpl
dc.subject.enneural networkspl
dc.subtypeArticlepl
dc.titleVariabilities in global DNA methylation and $\beta$-sheet richness establish spectroscopic landscapes among subtypes of pancreatic cancerpl
dc.title.journalEuropean Journal of Nuclear Medicine and Molecular Imagingpl
dc.typeJournalArticlepl
dspace.entity.typePublication
dc.abstract.enpl
Purpose: Knowledge about pancreatic cancer (PC) biology has been growing rapidly in recent decades. Nevertheless, the survival of PC patients has not greatly improved. The development of a novel methodology suitable for deep investigation of the nature of PC tumors is of great importance. Molecular imaging techniques, such as Fourier transform infrared (FTIR) spectroscopy and Raman hyperspectral mapping (RHM) combined with advanced multivariate data analysis, were useful in studying the biochemical composition of PC tissue. Methods: Here, we evaluated the potential of molecular imaging in differentiating three groups of PC tumors, which originate from different precursor lesions. Specifically, we comprehensively investigated adenocarcinomas (ACs): conventional ductal AC, intraductal papillary mucinous carcinoma, and ampulla of Vater AC. FTIR microspectroscopy and RHM maps of 24 PC tissue slides were obtained, and comprehensive advanced statistical analyses, such as hierarchical clustering and nonnegative matrix factorization, were performed on a total of 211,355 Raman spectra. Additionally, we employed deep learning technology for the same task of PC subtyping to enable automation. The so-called convolutional neural network (CNN) was trained to recognize spectra specific to each PC group and then employed to generate CNN-prediction-based tissue maps. To identify the DNA methylation spectral markers, we used differently methylated, isolated DNA and compared the observed spectral differences with the results obtained from cellular nuclei regions of PC tissues. Results: The results showed significant differences among cancer tissues of the studied PC groups. The main findings are the varying content of β-sheet-rich proteins within the PC cells and alterations in the relative DNA methylation level. Our CNN model efficiently differentiated PC groups with 94% accuracy. The usage of CNN in the classification task did not require Raman spectral data preprocessing and eliminated the need for extensive knowledge of statistical methodologies. Conclusions: Molecular spectroscopy combined with CNN technology is a powerful tool for PC detection and subtyping. The molecular fingerprint of DNA methylation and β-sheet cytoplasmic proteins established by our results is different for the main PC groups and allowed the subtyping of pancreatic tumors, which can improve patient management and increase their survival. Our observations are of key importance in understanding the variability of PC and allow translation of the methodology into clinical practice by utilizing liquid biopsy testing.
dc.affiliationpl
Wydział Lekarski : Zakład Neuropatologii
dc.affiliationpl
Wydział Lekarski : Zakład Patomorfologii Klinicznej i Doświadczalnej
dc.affiliationpl
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiego
dc.affiliationpl
Szkoła Doktorska Nauk Ścisłych i Przyrodniczych
dc.cm.idpl
111343
dc.cm.idOmegapl
UJCM88af441f334b46cb8c144c12a9a2cea0
dc.contributor.authorpl
Szymoński, Krzysztof - 140864
dc.contributor.authorpl
Lipiec, Ewelina - 103664
dc.contributor.authorpl
Sofińska, Kamila - 349863
dc.contributor.authorpl
Skirlińska-Nosek, Katarzyna - 426573
dc.contributor.authorpl
Czaja, Michał - 367610
dc.contributor.authorpl
Seweryn, Sara - 389877
dc.contributor.authorpl
Wilkosz, Natalia - 169289
dc.contributor.authorpl
Birarda, Giovanni
dc.contributor.authorpl
Piccirilli, Federica
dc.contributor.authorpl
Vaccari, Lisa
dc.contributor.authorpl
Chmura, Łukasz - 200508
dc.contributor.authorpl
Szpor, Joanna - 133600
dc.contributor.authorpl
Adamek, Dariusz - 128411
dc.contributor.authorpl
Szymoński, Marek - 132296
dc.date.accessionpl
2023-03-09
dc.date.accessioned
2023-04-13T08:04:54Z
dc.date.available
2023-04-13T08:04:54Z
dc.date.issuedpl
2023
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.additionalpl
Online First 2023-02-09
dc.description.numberpl
6
dc.description.physicalpl
1792-1810
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
50
dc.identifier.doipl
10.1007/s00259-023-06121-7
dc.identifier.eissnpl
1619-7089
dc.identifier.issnpl
1619-7070
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/310296
dc.identifier.weblinkpl
https://link.springer.com/article/10.1007/s00259-023-06121-7
dc.languagepl
eng
dc.language.containerpl
eng
dc.pbn.affiliationpl
Dziedzina nauk medycznych i nauk o zdrowiu : nauki medyczne
dc.rights*
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
Otwarte czasopismo
dc.subject.enpl
DNA methylation
dc.subject.enpl
beta-sheet richness
dc.subject.enpl
pancreatic cancer subtyping
dc.subject.enpl
raman spectroscopy
dc.subject.enpl
molecular imaging
dc.subject.enpl
neural networks
dc.subtypepl
Article
dc.titlepl
Variabilities in global DNA methylation and $\beta$-sheet richness establish spectroscopic landscapes among subtypes of pancreatic cancer
dc.title.journalpl
European Journal of Nuclear Medicine and Molecular Imaging
dc.typepl
JournalArticle
dspace.entity.type
Publication

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
22
Views per month
Views per city
Krakow
19
Lodz
1
Nadarzyn
1
Downloads
szymonski_lipiec_et-al_variabilities_in_global_dna_methylation_and_beta-sheet_richness_2023.pdf
8