Predicting shear wave velocity from conventional well logs with deep and hybrid machine learning algorithms

2023
journal article
article
39
cris.lastimport.wos2024-04-09T21:41:22Z
dc.affiliationWydział Geografii i Geologii : Instytut Nauk Geologicznychpl
dc.contributor.authorRajabi, Meysampl
dc.contributor.authorHazbeh, Omidpl
dc.contributor.authorDavoodi, Shadfarpl
dc.contributor.authorWood, David A.pl
dc.contributor.authorTehrani, Pezhman Soltanipl
dc.contributor.authorGhorbani, Hamzehpl
dc.contributor.authorMehrad, Mohammadpl
dc.contributor.authorMohamadian, Nimapl
dc.contributor.authorRukavishnikov, Valeriy S.pl
dc.contributor.authorRadwan, Ahmed Eid Ahmed - 464004 pl
dc.date.accessioned2023-02-14T09:29:39Z
dc.date.available2023-02-14T09:29:39Z
dc.date.issued2023pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.additionalBibliogr. s. 38-42pl
dc.description.number1pl
dc.description.physical19-42pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume13pl
dc.identifier.doi10.1007/s13202-022-01531-zpl
dc.identifier.eissn2190-0566pl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/307745
dc.languageengpl
dc.language.containerengpl
dc.pbn.affiliationDziedzina nauk ścisłych i przyrodniczych : nauki o Ziemi i środowiskupl
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl*
dc.share.typeotwarte czasopismo
dc.subject.enshear wave velocitypl
dc.subject.enhybrid machine learningpl
dc.subject.endeep learningpl
dc.subject.enwell-log influencing variablespl
dc.subject.enmulti-well datasetpl
dc.subject.enconvolutional neural networkpl
dc.subtypeArticlepl
dc.titlePredicting shear wave velocity from conventional well logs with deep and hybrid machine learning algorithmspl
dc.title.journalJournal of Petroleum Exploration and Production Technologypl
dc.typeJournalArticlepl
dspace.entity.typePublication
cris.lastimport.wos
2024-04-09T21:41:22Z
dc.affiliationpl
Wydział Geografii i Geologii : Instytut Nauk Geologicznych
dc.contributor.authorpl
Rajabi, Meysam
dc.contributor.authorpl
Hazbeh, Omid
dc.contributor.authorpl
Davoodi, Shadfar
dc.contributor.authorpl
Wood, David A.
dc.contributor.authorpl
Tehrani, Pezhman Soltani
dc.contributor.authorpl
Ghorbani, Hamzeh
dc.contributor.authorpl
Mehrad, Mohammad
dc.contributor.authorpl
Mohamadian, Nima
dc.contributor.authorpl
Rukavishnikov, Valeriy S.
dc.contributor.authorpl
Radwan, Ahmed Eid Ahmed - 464004
dc.date.accessioned
2023-02-14T09:29:39Z
dc.date.available
2023-02-14T09:29:39Z
dc.date.issuedpl
2023
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.additionalpl
Bibliogr. s. 38-42
dc.description.numberpl
1
dc.description.physicalpl
19-42
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
13
dc.identifier.doipl
10.1007/s13202-022-01531-z
dc.identifier.eissnpl
2190-0566
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/307745
dc.languagepl
eng
dc.language.containerpl
eng
dc.pbn.affiliationpl
Dziedzina nauk ścisłych i przyrodniczych : nauki o Ziemi i środowisku
dc.rights*
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
otwarte czasopismo
dc.subject.enpl
shear wave velocity
dc.subject.enpl
hybrid machine learning
dc.subject.enpl
deep learning
dc.subject.enpl
well-log influencing variables
dc.subject.enpl
multi-well dataset
dc.subject.enpl
convolutional neural network
dc.subtypepl
Article
dc.titlepl
Predicting shear wave velocity from conventional well logs with deep and hybrid machine learning algorithms
dc.title.journalpl
Journal of Petroleum Exploration and Production Technology
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
2
Views per month
Downloads
radwan_et-al_predicting_shear_wave_2023.pdf
1