Simple view
Full metadata view
Authors
Statistics
Predicting shear wave velocity from conventional well logs with deep and hybrid machine learning algorithms
Journal
Journal of Petroleum Exploration and Production Technology
70
Author
Volume
13
Number
1
Pages
19-42
eISSN
2190-0566
Keywords in English
shear wave velocity
hybrid machine learning
deep learning
well-log influencing variables
multi-well dataset
convolutional neural network
Remarks
Bibliogr. s. 38-42
Language
English
Journal language
English
Affiliation
Wydział Geografii i Geologii : Instytut Nauk Geologicznych
Scopus© citations
39
cris.lastimport.wos | 2024-04-09T21:41:22Z | |
dc.affiliation | Wydział Geografii i Geologii : Instytut Nauk Geologicznych | pl |
dc.contributor.author | Rajabi, Meysam | pl |
dc.contributor.author | Hazbeh, Omid | pl |
dc.contributor.author | Davoodi, Shadfar | pl |
dc.contributor.author | Wood, David A. | pl |
dc.contributor.author | Tehrani, Pezhman Soltani | pl |
dc.contributor.author | Ghorbani, Hamzeh | pl |
dc.contributor.author | Mehrad, Mohammad | pl |
dc.contributor.author | Mohamadian, Nima | pl |
dc.contributor.author | Rukavishnikov, Valeriy S. | pl |
dc.contributor.author | Radwan, Ahmed Eid Ahmed - 464004 | pl |
dc.date.accessioned | 2023-02-14T09:29:39Z | |
dc.date.available | 2023-02-14T09:29:39Z | |
dc.date.issued | 2023 | pl |
dc.date.openaccess | 0 | |
dc.description.accesstime | w momencie opublikowania | |
dc.description.additional | Bibliogr. s. 38-42 | pl |
dc.description.number | 1 | pl |
dc.description.physical | 19-42 | pl |
dc.description.version | ostateczna wersja wydawcy | |
dc.description.volume | 13 | pl |
dc.identifier.doi | 10.1007/s13202-022-01531-z | pl |
dc.identifier.eissn | 2190-0566 | pl |
dc.identifier.uri | https://ruj.uj.edu.pl/xmlui/handle/item/307745 | |
dc.language | eng | pl |
dc.language.container | eng | pl |
dc.pbn.affiliation | Dziedzina nauk ścisłych i przyrodniczych : nauki o Ziemi i środowisku | pl |
dc.rights | Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa | * |
dc.rights.licence | CC-BY | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/legalcode.pl | * |
dc.share.type | otwarte czasopismo | |
dc.subject.en | shear wave velocity | pl |
dc.subject.en | hybrid machine learning | pl |
dc.subject.en | deep learning | pl |
dc.subject.en | well-log influencing variables | pl |
dc.subject.en | multi-well dataset | pl |
dc.subject.en | convolutional neural network | pl |
dc.subtype | Article | pl |
dc.title | Predicting shear wave velocity from conventional well logs with deep and hybrid machine learning algorithms | pl |
dc.title.journal | Journal of Petroleum Exploration and Production Technology | pl |
dc.type | JournalArticle | pl |
dspace.entity.type | Publication |
cris.lastimport.wos
2024-04-09T21:41:22Z dc.affiliationpl
Wydział Geografii i Geologii : Instytut Nauk Geologicznych dc.contributor.authorpl
Rajabi, Meysam dc.contributor.authorpl
Hazbeh, Omid dc.contributor.authorpl
Davoodi, Shadfar dc.contributor.authorpl
Wood, David A. dc.contributor.authorpl
Tehrani, Pezhman Soltani dc.contributor.authorpl
Ghorbani, Hamzeh dc.contributor.authorpl
Mehrad, Mohammad dc.contributor.authorpl
Mohamadian, Nima dc.contributor.authorpl
Rukavishnikov, Valeriy S. dc.contributor.authorpl
Radwan, Ahmed Eid Ahmed - 464004 dc.date.accessioned
2023-02-14T09:29:39Z dc.date.available
2023-02-14T09:29:39Z dc.date.issuedpl
2023 dc.date.openaccess
0 dc.description.accesstime
w momencie opublikowania dc.description.additionalpl
Bibliogr. s. 38-42 dc.description.numberpl
1 dc.description.physicalpl
19-42 dc.description.version
ostateczna wersja wydawcy dc.description.volumepl
13 dc.identifier.doipl
10.1007/s13202-022-01531-z dc.identifier.eissnpl
2190-0566 dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/307745 dc.languagepl
eng dc.language.containerpl
eng dc.pbn.affiliationpl
Dziedzina nauk ścisłych i przyrodniczych : nauki o Ziemi i środowisku dc.rights*
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa dc.rights.licence
CC-BY dc.rights.uri*
http://creativecommons.org/licenses/by/4.0/legalcode.pl dc.share.type
otwarte czasopismo dc.subject.enpl
shear wave velocity dc.subject.enpl
hybrid machine learning dc.subject.enpl
deep learning dc.subject.enpl
well-log influencing variables dc.subject.enpl
multi-well dataset dc.subject.enpl
convolutional neural network dc.subtypepl
Article dc.titlepl
Predicting shear wave velocity from conventional well logs with deep and hybrid machine learning algorithms dc.title.journalpl
Journal of Petroleum Exploration and Production Technology dc.typepl
JournalArticle dspace.entity.type
Publication Affiliations
Wydział Geografii i Geologii
Radwan, Ahmed Eid Ahmed
No affiliation
Rajabi, Meysam
Hazbeh, Omid
Davoodi, Shadfar
Wood, David A.
Tehrani, Pezhman Soltani
Ghorbani, Hamzeh
Mehrad, Mohammad
Mohamadian, Nima
Rukavishnikov, Valeriy S.
* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.
Views
2
Views per month
Downloads
radwan_et-al_predicting_shear_wave_2023.pdf
1