Five open problems in quantum information theory

2022
journal article
article
66
dc.abstract.enWe identify five selected open problems in the theory of quantum information, which are rather simple to formulate, are well studied in the literature, but are technically not easy. As these problems enjoy diverse mathematical connections, they offer a huge breakthrough potential. The first four concern existence of certain objects relevant for quantum information, namely a family of symmetric informationally complete generalized measurements in an infinite sequence of dimensions, mutually unbiased bases in dimension six, measurements saturating multiparameter Cramér-Rao bound and bound entangled states with negative partial transpose. The fifth problem requires checking whether a certain state of a two-ququart system is two-copy distillable.pl
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki Teoretycznejpl
dc.contributor.authorHorodecki, Pawełpl
dc.contributor.authorRudnicki, Łukaszpl
dc.contributor.authorŻyczkowski, Karol - 132981 pl
dc.date.accessioned2022-08-24T09:32:17Z
dc.date.available2022-08-24T09:32:17Z
dc.date.issued2022pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number1pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume3pl
dc.identifier.articleid010101pl
dc.identifier.doi10.1103/PRXQuantum.3.010101pl
dc.identifier.eissn2691-3399pl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/298414
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl*
dc.share.typeotwarte czasopismo
dc.subtypeArticlepl
dc.titleFive open problems in quantum information theorypl
dc.title.journalPRX Quantumpl
dc.typeJournalArticlepl
dspace.entity.typePublication
dc.abstract.enpl
We identify five selected open problems in the theory of quantum information, which are rather simple to formulate, are well studied in the literature, but are technically not easy. As these problems enjoy diverse mathematical connections, they offer a huge breakthrough potential. The first four concern existence of certain objects relevant for quantum information, namely a family of symmetric informationally complete generalized measurements in an infinite sequence of dimensions, mutually unbiased bases in dimension six, measurements saturating multiparameter Cramér-Rao bound and bound entangled states with negative partial transpose. The fifth problem requires checking whether a certain state of a two-ququart system is two-copy distillable.
dc.affiliationpl
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki Teoretycznej
dc.contributor.authorpl
Horodecki, Paweł
dc.contributor.authorpl
Rudnicki, Łukasz
dc.contributor.authorpl
Życzkowski, Karol - 132981
dc.date.accessioned
2022-08-24T09:32:17Z
dc.date.available
2022-08-24T09:32:17Z
dc.date.issuedpl
2022
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.numberpl
1
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
3
dc.identifier.articleidpl
010101
dc.identifier.doipl
10.1103/PRXQuantum.3.010101
dc.identifier.eissnpl
2691-3399
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/298414
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
otwarte czasopismo
dc.subtypepl
Article
dc.titlepl
Five open problems in quantum information theory
dc.title.journalpl
PRX Quantum
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
0
Views per month
Downloads
horodecki_rudnicki_zyczkowski_five_open_problems_in_quantum_information_theory_2022.pdf
44
horodecki_rudnicki_zyczkowski_five_open_problems_in_quantum_information_theory_2022.odt
24