In this paper we consider an abstract class of time-dependent quasi variational–hemivariational inequalities which involves history-dependent operators and a set of unilateral constraints. First, we establish the existence and uniqueness of solution by using a recent result for elliptic variational–hemivariational inequalities in reflexive Banach spaces combined with a fixed-point principle for history-dependent operators. Then, we apply the abstract result to show the unique weak solvability to a quasistatic viscoelastic frictional contact problem. The contact law involves a unilateral Signorini-type condition for the normal velocity and the nonmonotone normal damped response condition while the friction condition is a version of the Coulomb law of dry friction in which the friction bound depends on the accumulated slip.
keywords in English:
variational–hemivariational inequality, history-dependent operator, unilateral constraint, existence and uniqueness, frictional contact
affiliation:
Wydział Matematyki i Informatyki : Katedra Teorii Optymalizacji i Sterowania, Wydział Matematyki i Informatyki
Except where otherwise noted, this item's license is described as Licencja Creative Commons - Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 Międzynarodowa (CC BY-NC-ND)