On Morin configurations of higher length

2022
journal article
article
2
dc.abstract.enThis paper studies finite Morin configurations F of planes in P5 having higher length-a question naturally related to the theory of Gushel–Mukai varieties. The uniqueness of the configuration of maximal cardinality 20 is proven. This is related to the canonical genus 6 curve Cℓ union of the 10 lines in a smooth quintic Del Pezzo surface Y in P5 and to the Petersen graph. More in general an irreducible family of special configurations of length ≥11⁠, we name as Morin–Del Pezzo configurations, is considered and studied. This includes the configuration of maximal cardinality and families of configurations of lenght ≥16⁠, previously unknown. It depends on 9 moduli and is defined via the family of nodal and rational canonical curves of Y⁠. The special relations between Morin–Del Pezzo configurations and the geometry of special threefolds, like the Igusa quartic or its dual Segre primal, are focused.pl
dc.affiliationWydział Matematyki i Informatyki : Instytut Matematykipl
dc.contributor.authorKapustka, Grzegorz - 160641 pl
dc.contributor.authorVerra, Alessandropl
dc.date.accessioned2022-02-25T22:51:53Z
dc.date.available2022-02-25T22:51:53Z
dc.date.issued2022pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number1pl
dc.description.physical728-773pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume2022pl
dc.identifier.doi10.1093/imrn/rnaa170pl
dc.identifier.eissn1687-0247pl
dc.identifier.issn1073-7928pl
dc.identifier.project2018/30/E/ST1/00530pl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/288603
dc.languageengpl
dc.language.containerengpl
dc.rightsDodaję tylko opis bibliograficzny*
dc.rights.licenceInna otwarta licencja
dc.rights.uri*
dc.share.typeotwarte czasopismo
dc.subtypeArticlepl
dc.titleOn Morin configurations of higher lengthpl
dc.title.journalInternational Mathematics Research Noticespl
dc.typeJournalArticlepl
dspace.entity.typePublication
dc.abstract.enpl
This paper studies finite Morin configurations F of planes in P5 having higher length-a question naturally related to the theory of Gushel–Mukai varieties. The uniqueness of the configuration of maximal cardinality 20 is proven. This is related to the canonical genus 6 curve Cℓ union of the 10 lines in a smooth quintic Del Pezzo surface Y in P5 and to the Petersen graph. More in general an irreducible family of special configurations of length ≥11⁠, we name as Morin–Del Pezzo configurations, is considered and studied. This includes the configuration of maximal cardinality and families of configurations of lenght ≥16⁠, previously unknown. It depends on 9 moduli and is defined via the family of nodal and rational canonical curves of Y⁠. The special relations between Morin–Del Pezzo configurations and the geometry of special threefolds, like the Igusa quartic or its dual Segre primal, are focused.
dc.affiliationpl
Wydział Matematyki i Informatyki : Instytut Matematyki
dc.contributor.authorpl
Kapustka, Grzegorz - 160641
dc.contributor.authorpl
Verra, Alessandro
dc.date.accessioned
2022-02-25T22:51:53Z
dc.date.available
2022-02-25T22:51:53Z
dc.date.issuedpl
2022
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.numberpl
1
dc.description.physicalpl
728-773
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
2022
dc.identifier.doipl
10.1093/imrn/rnaa170
dc.identifier.eissnpl
1687-0247
dc.identifier.issnpl
1073-7928
dc.identifier.projectpl
2018/30/E/ST1/00530
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/288603
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Dodaję tylko opis bibliograficzny
dc.rights.licence
Inna otwarta licencja
dc.rights.uri*
dc.share.type
otwarte czasopismo
dc.subtypepl
Article
dc.titlepl
On Morin configurations of higher length
dc.title.journalpl
International Mathematics Research Notices
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
9
Views per month
Views per city
Ashburn
4
Wroclaw
2
Dublin
1
Krakow
1
Lappeenranta
1

No access

No Thumbnail Available