Virtual reality-based parallel coordinates plots enhanced with explainable AI and data-science analytics for decision-making processes

2022
journal article
article
8
dc.abstract.enWe present a refinement of the Immersive Parallel Coordinates Plots (IPCP) system for Virtual Reality (VR). The evolved system provides data-science analytics built around a well-known method for visualization of multidimensional datasets in VR. The data-science analytics enhancements consist of importance analysis and a number of clustering algorithms including a novel SuMC (Subspace Memory Clustering) solution. These analytical methods were applied to both the main visualizations and supporting cross-dimensional scatter plots. They automate part of the analytical work that in the previous version of IPCP had to be done by an expert. We test the refined system with two sample datasets that represent the optimum solutions of two different multi-objective optimization studies in turbomachinery. The first one describes 54 data items with 29 dimensions (DS1), and the second 166 data items with 39 dimensions (DS2). We include the details of these methods as well as the reasoning behind selecting some methods over others.pl
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Zespół Zakładów Informatyki Stosowanejpl
dc.affiliationWydział Matematyki i Informatyki : Instytut Informatyki i Matematyki Komputerowejpl
dc.affiliationWydział Matematyki i Informatyki : Instytut Matematykipl
dc.contributor.authorBobek, Szymon - 428058 pl
dc.contributor.authorTadeja, Sławomir - 119915 pl
dc.contributor.authorStruski, Łukasz - 135994 pl
dc.contributor.authorStachura, Przemysławpl
dc.contributor.authorKipouros, Timoleonpl
dc.contributor.authorTabor, Jacek - 132362 pl
dc.contributor.authorNalepa, Grzegorz - 200414 pl
dc.contributor.authorKristensson, Per Olapl
dc.date.accessioned2022-02-11T14:50:57Z
dc.date.available2022-02-11T14:50:57Z
dc.date.issued2022pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number1pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume12pl
dc.identifier.articleid331pl
dc.identifier.doi10.3390/app12010331pl
dc.identifier.eissn2076-3417pl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/288053
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl*
dc.share.typeotwarte czasopismo
dc.subject.envirtual realitypl
dc.subject.endecision-makingpl
dc.subject.enexplainable AIpl
dc.subject.envisualizationpl
dc.subject.envisual analyticspl
dc.subject.enimmersive analyticspl
dc.subtypeArticlepl
dc.titleVirtual reality-based parallel coordinates plots enhanced with explainable AI and data-science analytics for decision-making processespl
dc.title.journalApplied Sciencespl
dc.typeJournalArticlepl
dspace.entity.typePublication
dc.abstract.enpl
We present a refinement of the Immersive Parallel Coordinates Plots (IPCP) system for Virtual Reality (VR). The evolved system provides data-science analytics built around a well-known method for visualization of multidimensional datasets in VR. The data-science analytics enhancements consist of importance analysis and a number of clustering algorithms including a novel SuMC (Subspace Memory Clustering) solution. These analytical methods were applied to both the main visualizations and supporting cross-dimensional scatter plots. They automate part of the analytical work that in the previous version of IPCP had to be done by an expert. We test the refined system with two sample datasets that represent the optimum solutions of two different multi-objective optimization studies in turbomachinery. The first one describes 54 data items with 29 dimensions (DS1), and the second 166 data items with 39 dimensions (DS2). We include the details of these methods as well as the reasoning behind selecting some methods over others.
dc.affiliationpl
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Zespół Zakładów Informatyki Stosowanej
dc.affiliationpl
Wydział Matematyki i Informatyki : Instytut Informatyki i Matematyki Komputerowej
dc.affiliationpl
Wydział Matematyki i Informatyki : Instytut Matematyki
dc.contributor.authorpl
Bobek, Szymon - 428058
dc.contributor.authorpl
Tadeja, Sławomir - 119915
dc.contributor.authorpl
Struski, Łukasz - 135994
dc.contributor.authorpl
Stachura, Przemysław
dc.contributor.authorpl
Kipouros, Timoleon
dc.contributor.authorpl
Tabor, Jacek - 132362
dc.contributor.authorpl
Nalepa, Grzegorz - 200414
dc.contributor.authorpl
Kristensson, Per Ola
dc.date.accessioned
2022-02-11T14:50:57Z
dc.date.available
2022-02-11T14:50:57Z
dc.date.issuedpl
2022
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.numberpl
1
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
12
dc.identifier.articleidpl
331
dc.identifier.doipl
10.3390/app12010331
dc.identifier.eissnpl
2076-3417
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/288053
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
otwarte czasopismo
dc.subject.enpl
virtual reality
dc.subject.enpl
decision-making
dc.subject.enpl
explainable AI
dc.subject.enpl
visualization
dc.subject.enpl
visual analytics
dc.subject.enpl
immersive analytics
dc.subtypepl
Article
dc.titlepl
Virtual reality-based parallel coordinates plots enhanced with explainable AI and data-science analytics for decision-making processes
dc.title.journalpl
Applied Sciences
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.