The impact of data assimilation into the meteorological WRF model on birch pollen modelling

2022
journal article
article
1
dc.abstract.enWe analyse the impact of ground-based data assimilation to the Weather Research and Forecasting (WRF) meteorological model on parameters relevant for birch pollen emission calculations. Then, we use two different emission databases (BASE – no data assimilation, OBSNUD – data assimilation for the meteorological model) in the chemical transport model and evaluate birch pollen concentrations. Finally, we apply a scaling factor for the emissions (BASE and OBSNUD), based on the ratio between simulated and observed seasonal pollen integral (SPIn) to analyse its impact on birch concentrations over Central Europe. Assimilation of observational data significantly reduces model overestimation of air temperature, which is the main parameter responsible for the start of pollen emission and amount of released pollen. The results also show that a relatively small bias in air temperature from the model can lead to significant differences in heating degree days (HDD) value. This may cause the HDD threshold to be attained several days earlier/later than indicated from observational data which has further impact on the start of pollen emission. Even though the bias for air temperature was reduced for OBSNUD, the model indicates a start for the birch pollen season that is too early compared to observations. The start date of the season was improved at two of the 11 stations in Poland. Data assimilation does not have a significant impact on the season's end or SPIn value. The application of the SPIn factor for the emissions results in a much closer birch pollen concentration level to observations even though the factor does not improve the start or end of the pollen season. The post-processing of modelled meteorological fields, such as the application of bias correction, can be considered as a way to further improve the pollen emission modelling.
dc.affiliationWydział Lekarski : Zakład Alergologii Klinicznej i Środowiskowejpl
dc.cm.date2021-12-15
dc.cm.id106461
dc.cm.idOmegaUJCM53ae3745d1894b94a89fcb36ee4ad332pl
dc.contributor.authorWerner, Małgorzatapl
dc.contributor.authorBilińska-Prałat, Dariapl
dc.contributor.authorKryza, Maciejpl
dc.contributor.authorGuzikowski, Jakubpl
dc.contributor.authorMalkiewicz, Małgorzatapl
dc.contributor.authorRapiejko, Piotrpl
dc.contributor.authorChłopek, Kazimierapl
dc.contributor.authorDąbrowska-Zapart, Katarzynapl
dc.contributor.authorLipiec, Agnieszkapl
dc.contributor.authorJurkiewicz, Dariuszpl
dc.contributor.authorKalinowska, Ewapl
dc.contributor.authorMajkowska-Wojciechowska, Barbarapl
dc.contributor.authorMyszkowska, Dorota - 131089 pl
dc.contributor.authorPiotrowska-Weryszko, Krystynapl
dc.contributor.authorPuc, Małgorzatapl
dc.contributor.authorRapiejko, Annapl
dc.contributor.authorSiergiejko, Grzegorzpl
dc.contributor.authorWeryszko-Chmielewska, Elżbietapl
dc.contributor.authorWieczorkiewicz, Andrzejpl
dc.contributor.authorZiemianin, Monika - 149846 pl
dc.date.accession2022-02-15pl
dc.date.accessioned2021-12-15T20:34:45Z
dc.date.available2021-12-15T20:34:45Z
dc.date.issued2022pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.numberPart 3pl
dc.description.points200
dc.description.versionostateczna wersja wydawcy
dc.description.volume807pl
dc.identifier.articleid151028pl
dc.identifier.doi10.1016/j.scitotenv.2021.151028pl
dc.identifier.eissn1879-1026pl
dc.identifier.issn0048-9697pl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/285530
dc.identifier.weblinkhttps://www.sciencedirect.com/science/article/pii/S0048969721061064?via%3Dihub
dc.identifier.weblinkhttps://www.sciencedirect.com/science/article/pii/S0048969721061064?via%3Dihubpl
dc.languageengpl
dc.language.containerengpl
dc.pbn.affiliationDziedzina nauk medycznych i nauk o zdrowiu : nauki medyczne
dc.relation.uri*
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.typeinne
dc.subject.endata assimilation
dc.subject.entemperature bias
dc.subject.enbirch pollen emissions
dc.subject.enstart of the season
dc.subject.enEurope
dc.subject.enpollen concentrations
dc.subtypeArticlepl
dc.titleThe impact of data assimilation into the meteorological WRF model on birch pollen modellingpl
dc.title.journalScience of the Total Environmentpl
dc.typeJournalArticlepl
dspace.entity.typePublication
dc.abstract.en
We analyse the impact of ground-based data assimilation to the Weather Research and Forecasting (WRF) meteorological model on parameters relevant for birch pollen emission calculations. Then, we use two different emission databases (BASE – no data assimilation, OBSNUD – data assimilation for the meteorological model) in the chemical transport model and evaluate birch pollen concentrations. Finally, we apply a scaling factor for the emissions (BASE and OBSNUD), based on the ratio between simulated and observed seasonal pollen integral (SPIn) to analyse its impact on birch concentrations over Central Europe. Assimilation of observational data significantly reduces model overestimation of air temperature, which is the main parameter responsible for the start of pollen emission and amount of released pollen. The results also show that a relatively small bias in air temperature from the model can lead to significant differences in heating degree days (HDD) value. This may cause the HDD threshold to be attained several days earlier/later than indicated from observational data which has further impact on the start of pollen emission. Even though the bias for air temperature was reduced for OBSNUD, the model indicates a start for the birch pollen season that is too early compared to observations. The start date of the season was improved at two of the 11 stations in Poland. Data assimilation does not have a significant impact on the season's end or SPIn value. The application of the SPIn factor for the emissions results in a much closer birch pollen concentration level to observations even though the factor does not improve the start or end of the pollen season. The post-processing of modelled meteorological fields, such as the application of bias correction, can be considered as a way to further improve the pollen emission modelling.
dc.affiliationpl
Wydział Lekarski : Zakład Alergologii Klinicznej i Środowiskowej
dc.cm.date
2021-12-15
dc.cm.id
106461
dc.cm.idOmegapl
UJCM53ae3745d1894b94a89fcb36ee4ad332
dc.contributor.authorpl
Werner, Małgorzata
dc.contributor.authorpl
Bilińska-Prałat, Daria
dc.contributor.authorpl
Kryza, Maciej
dc.contributor.authorpl
Guzikowski, Jakub
dc.contributor.authorpl
Malkiewicz, Małgorzata
dc.contributor.authorpl
Rapiejko, Piotr
dc.contributor.authorpl
Chłopek, Kazimiera
dc.contributor.authorpl
Dąbrowska-Zapart, Katarzyna
dc.contributor.authorpl
Lipiec, Agnieszka
dc.contributor.authorpl
Jurkiewicz, Dariusz
dc.contributor.authorpl
Kalinowska, Ewa
dc.contributor.authorpl
Majkowska-Wojciechowska, Barbara
dc.contributor.authorpl
Myszkowska, Dorota - 131089
dc.contributor.authorpl
Piotrowska-Weryszko, Krystyna
dc.contributor.authorpl
Puc, Małgorzata
dc.contributor.authorpl
Rapiejko, Anna
dc.contributor.authorpl
Siergiejko, Grzegorz
dc.contributor.authorpl
Weryszko-Chmielewska, Elżbieta
dc.contributor.authorpl
Wieczorkiewicz, Andrzej
dc.contributor.authorpl
Ziemianin, Monika - 149846
dc.date.accessionpl
2022-02-15
dc.date.accessioned
2021-12-15T20:34:45Z
dc.date.available
2021-12-15T20:34:45Z
dc.date.issuedpl
2022
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.numberpl
Part 3
dc.description.points
200
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
807
dc.identifier.articleidpl
151028
dc.identifier.doipl
10.1016/j.scitotenv.2021.151028
dc.identifier.eissnpl
1879-1026
dc.identifier.issnpl
0048-9697
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/285530
dc.identifier.weblink
https://www.sciencedirect.com/science/article/pii/S0048969721061064?via%3Dihub
dc.identifier.weblinkpl
https://www.sciencedirect.com/science/article/pii/S0048969721061064?via%3Dihub
dc.languagepl
eng
dc.language.containerpl
eng
dc.pbn.affiliation
Dziedzina nauk medycznych i nauk o zdrowiu : nauki medyczne
dc.relation.uri*
dc.rights
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
inne
dc.subject.en
data assimilation
dc.subject.en
temperature bias
dc.subject.en
birch pollen emissions
dc.subject.en
start of the season
dc.subject.en
Europe
dc.subject.en
pollen concentrations
dc.subtypepl
Article
dc.titlepl
The impact of data assimilation into the meteorological WRF model on birch pollen modelling
dc.title.journalpl
Science of the Total Environment
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
18
Views per month
Views per city
Krakow
5
Beijing
2
Dublin
2
Wroclaw
2
Ashburn
1
Downloads
myszkowska_et-al_the_impact_of_data_assimilation_into_2022.pdf
1