Characterization of boundary pluripolar hulls

thesis
dc.abstract.enA pluripolar set in a domain D $\subset \mathbb{C}^{n}$ is a subset of D that lies in $-\infty$-locus of a plurisubharmonic function in D: Some properties and applications of such a set are known. In this thesis we will discuss boundary pluripolar set and hull. A set in $\partial$D is called boundary pluripolar or b - pluripolar for D if it is a subset of $-\infty$-locus of an upper semicontinuous function on $\overline{D}$ that is plurisubharmonic in D. We will discuss different possibilities to compute boundary pluripolar hull of a b-pluripolar set in the boundary of a domain. We give some properties of boundary relative extremal function and use it to characterize boundary pluripolar hull in the domain. We show the existence of a set that is b-pluripolar for the unit ball but not pluripolar in $\mathbb{C}^{2}$. We prove by two different methods that the hull is always trivial in the boundary of a B-regular domain. After giving some approximation theorems of holomorphic maps we characterize boundary pluripolar sets in terms of analytic disc. We review the definitions of the boundary relative extremal: For various domains we give an affirmative answer to the question of Sadullaev, [71], whether these extremal functions are equal. We also show that certain versions of Edwards duality theorem do not hold in open sets. By using Poletsky's theory we characterize the thinness of a subset in $\mathbb{C}^{n}$ by analytic discs.pl
dc.affiliationWydział Matematyki i Informatyki : Instytut Matematykipl
dc.contributor.advisorKosiński, Łukasz - 136119 pl
dc.contributor.authorDjire, Ibrahim - 214333 pl
dc.contributor.institutionJagiellonian University. Institute of Mathematicspl
dc.contributor.reviewerKlimek, Maciejpl
dc.contributor.reviewerJasiczek, Michałpl
dc.date.accessioned2021-11-19T07:50:36Z
dc.date.available2021-11-19T07:50:36Z
dc.date.openaccess0
dc.date.submitted2021-01-11pl
dc.description.accesstimew momencie opublikowania
dc.description.additionalBibliogr. s. 47-52pl
dc.description.physicalVI, 52pl
dc.description.versionostateczna wersja autorska (postprint)
dc.identifier.callnumberDokt. 2021/003pl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/284068
dc.languageengpl
dc.place[Kraków]pl
dc.rightsCopyright*
dc.rights.licenceInna otwarta licencja
dc.rights.simpleviewWolny dostęp
dc.rights.urihttp://ruj.uj.edu.pl/4dspace/License/copyright/licencja_copyright.pdf*
dc.share.typeotwarte repozytorium
dc.subject.enpluripolarpl
dc.subject.enplurisubharmonicpl
dc.subject.enanalytic discpl
dc.subject.enthinnesspl
dc.subject.enB-regularpl
dc.subject.plzbiór pluripolarnypl
dc.subject.plfunkcja plurisubharmonicznapl
dc.subject.pldyski analitycznepl
dc.subject.plcienkościpl
dc.subject.plB-regularnośćpl
dc.titleCharacterization of boundary pluripolar hullspl
dc.title.alternativeCharakteryzacja brzegowych otoczek pluripolarnychpl
dc.typeThesispl
dspace.entity.typePublication
dc.abstract.enpl
A pluripolar set in a domain D $\subset \mathbb{C}^{n}$ is a subset of D that lies in $-\infty$-locus of a plurisubharmonic function in D: Some properties and applications of such a set are known. In this thesis we will discuss boundary pluripolar set and hull. A set in $\partial$D is called boundary pluripolar or b - pluripolar for D if it is a subset of $-\infty$-locus of an upper semicontinuous function on $\overline{D}$ that is plurisubharmonic in D. We will discuss different possibilities to compute boundary pluripolar hull of a b-pluripolar set in the boundary of a domain. We give some properties of boundary relative extremal function and use it to characterize boundary pluripolar hull in the domain. We show the existence of a set that is b-pluripolar for the unit ball but not pluripolar in $\mathbb{C}^{2}$. We prove by two different methods that the hull is always trivial in the boundary of a B-regular domain. After giving some approximation theorems of holomorphic maps we characterize boundary pluripolar sets in terms of analytic disc. We review the definitions of the boundary relative extremal: For various domains we give an affirmative answer to the question of Sadullaev, [71], whether these extremal functions are equal. We also show that certain versions of Edwards duality theorem do not hold in open sets. By using Poletsky's theory we characterize the thinness of a subset in $\mathbb{C}^{n}$ by analytic discs.
dc.affiliationpl
Wydział Matematyki i Informatyki : Instytut Matematyki
dc.contributor.advisorpl
Kosiński, Łukasz - 136119
dc.contributor.authorpl
Djire, Ibrahim - 214333
dc.contributor.institutionpl
Jagiellonian University. Institute of Mathematics
dc.contributor.reviewerpl
Klimek, Maciej
dc.contributor.reviewerpl
Jasiczek, Michał
dc.date.accessioned
2021-11-19T07:50:36Z
dc.date.available
2021-11-19T07:50:36Z
dc.date.openaccess
0
dc.date.submittedpl
2021-01-11
dc.description.accesstime
w momencie opublikowania
dc.description.additionalpl
Bibliogr. s. 47-52
dc.description.physicalpl
VI, 52
dc.description.version
ostateczna wersja autorska (postprint)
dc.identifier.callnumberpl
Dokt. 2021/003
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/284068
dc.languagepl
eng
dc.placepl
[Kraków]
dc.rights*
Copyright
dc.rights.licence
Inna otwarta licencja
dc.rights.simpleview
Wolny dostęp
dc.rights.uri*
http://ruj.uj.edu.pl/4dspace/License/copyright/licencja_copyright.pdf
dc.share.type
otwarte repozytorium
dc.subject.enpl
pluripolar
dc.subject.enpl
plurisubharmonic
dc.subject.enpl
analytic disc
dc.subject.enpl
thinness
dc.subject.enpl
B-regular
dc.subject.plpl
zbiór pluripolarny
dc.subject.plpl
funkcja plurisubharmoniczna
dc.subject.plpl
dyski analityczne
dc.subject.plpl
cienkości
dc.subject.plpl
B-regularność
dc.titlepl
Characterization of boundary pluripolar hulls
dc.title.alternativepl
Charakteryzacja brzegowych otoczek pluripolarnych
dc.typepl
Thesis
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
12
Views per month
Views per city
Krakow
4
Wroclaw
2
Dublin
1
Hamburg
1
Świnoujście
1
Downloads
djire_characterization_of_boundary_pluripolar_hulls_2021.odt
33
djire_characterization_of_boundary_pluripolar_hulls_2021.pdf
19