Non-invasive multi-channel deep learning convolutional neural networks for localization and classification of common hepatic lesions

2021
journal article
article
17
cris.lastimport.wos2024-04-09T21:16:21Z
dc.abstract.enPurpose: Machine learning techniques, especially convolutional neural networks (CNN), have revolutionized the spectrum of computer vision tasks with a primary focus on supervised and labelled image datasets. We aimed to assess a novel method to segment the liver from the abdomen computed tomography (CT) image using the CNN network, and to train a unique method to locate and classify liver lesion pre-histological findings using multi-channel deep learning CNN (MDL-CNN). Material and methods: The post-contrast CT images of the liver with a resolution of 0.625 mm were chosen for the study. In a random method, 50 examples of each hepatocellular carcinomas, metastases tumours, haemangiomas, hepatic cysts were chosen and evaluated. Results: The dice score quantitatively analyses the similarity of segmentation results with the training dataset. In the first CNN model for segmenting the liver, the dice score was 96.18%. The MDL-CNN model yielded 98.78% accuracy in classification, and the dice score for locating liver lesions was 95.70%. Additionally, the performance of this model was compared to various other existing models. Conclusions: According to our study, the machine learning approach can be successfully implemented to segment the liver and classify lesions, which will help radiologists impart better diagnosis.pl
dc.contributor.authorShah, Shubhampl
dc.contributor.authorMishra, Rubypl
dc.contributor.authorSzczurowska, Agatapl
dc.contributor.authorGuziński, Maciejpl
dc.date.accessioned2021-08-13T06:07:50Z
dc.date.available2021-08-13T06:07:50Z
dc.date.issued2021pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.additionalBibliogr. s. e448pl
dc.description.physicale440-e448pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume86pl
dc.identifier.doi10.5114/pjr.2021.108257pl
dc.identifier.eissn1899-0967pl
dc.identifier.issn1733-134Xpl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/277140
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 Międzynarodowa*
dc.rights.licenceCC-BY-NC-ND
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.pl*
dc.share.typeotwarte czasopismo
dc.subject.enconvolutional neural networkspl
dc.subject.endeep learningpl
dc.subject.enliver segmentationpl
dc.subject.enliver lesion classificationpl
dc.subject.enmachine learningpl
dc.subject.enROI segmentationpl
dc.subtypeArticlepl
dc.titleNon-invasive multi-channel deep learning convolutional neural networks for localization and classification of common hepatic lesionspl
dc.title.journalPolish Journal of Radiologypl
dc.typeJournalArticlepl
dspace.entity.typePublication
cris.lastimport.wos
2024-04-09T21:16:21Z
dc.abstract.enpl
Purpose: Machine learning techniques, especially convolutional neural networks (CNN), have revolutionized the spectrum of computer vision tasks with a primary focus on supervised and labelled image datasets. We aimed to assess a novel method to segment the liver from the abdomen computed tomography (CT) image using the CNN network, and to train a unique method to locate and classify liver lesion pre-histological findings using multi-channel deep learning CNN (MDL-CNN). Material and methods: The post-contrast CT images of the liver with a resolution of 0.625 mm were chosen for the study. In a random method, 50 examples of each hepatocellular carcinomas, metastases tumours, haemangiomas, hepatic cysts were chosen and evaluated. Results: The dice score quantitatively analyses the similarity of segmentation results with the training dataset. In the first CNN model for segmenting the liver, the dice score was 96.18%. The MDL-CNN model yielded 98.78% accuracy in classification, and the dice score for locating liver lesions was 95.70%. Additionally, the performance of this model was compared to various other existing models. Conclusions: According to our study, the machine learning approach can be successfully implemented to segment the liver and classify lesions, which will help radiologists impart better diagnosis.
dc.contributor.authorpl
Shah, Shubham
dc.contributor.authorpl
Mishra, Ruby
dc.contributor.authorpl
Szczurowska, Agata
dc.contributor.authorpl
Guziński, Maciej
dc.date.accessioned
2021-08-13T06:07:50Z
dc.date.available
2021-08-13T06:07:50Z
dc.date.issuedpl
2021
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.additionalpl
Bibliogr. s. e448
dc.description.physicalpl
e440-e448
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
86
dc.identifier.doipl
10.5114/pjr.2021.108257
dc.identifier.eissnpl
1899-0967
dc.identifier.issnpl
1733-134X
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/277140
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 Międzynarodowa
dc.rights.licence
CC-BY-NC-ND
dc.rights.uri*
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.pl
dc.share.type
otwarte czasopismo
dc.subject.enpl
convolutional neural networks
dc.subject.enpl
deep learning
dc.subject.enpl
liver segmentation
dc.subject.enpl
liver lesion classification
dc.subject.enpl
machine learning
dc.subject.enpl
ROI segmentation
dc.subtypepl
Article
dc.titlepl
Non-invasive multi-channel deep learning convolutional neural networks for localization and classification of common hepatic lesions
dc.title.journalpl
Polish Journal of Radiology
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
21
Views per month
Views per city
Ashburn
4
Dublin
3
New York
2
Wroclaw
2
Brussels
1
Katowice
1
Krakow
1
Downloads
shah_mishra_szczurowska_guzinski_non-invasive_multi-channel_deep_learning_2021.pdf
9