Google research football : a novel reinforcement learning environment

2020
book section
conference proceedings
cris.lastimport.wos2024-04-09T19:14:06Z
dc.abstract.enRecent progress in the field of reinforcement learning has been accelerated by virtual learning environments such as video games, where novel algorithms and ideas can be quickly tested in a safe and reproducible manner. We introduce the Google Research Football Environment, a new reinforcement learning environment where agents are trained to play football in an advanced, physics-based 3D simulator. The resulting environment is challenging, easy to use and customize, and it is available under a permissive open-source license. In addition, it provides support for multiplayer and multi-agent experiments. We propose three full-game scenarios of varying difficulty with the Football Benchmarks and report baseline results for three commonly used reinforcement algorithms (IMPALA, PPO, and Ape-X DQN). We also provide a diverse set of simpler scenarios with the Football Academy and showcase several promising research directions.pl
dc.affiliationWydział Matematyki i Informatykipl
dc.conferenceThe Thirty-Fourth AAAI Conference on Artificial Intelligence
dc.conference.cityNew York
dc.conference.countryUSA
dc.conference.datefinish2020-01-12
dc.conference.datestart2020-02-07
dc.conference.shortcutAAAI
dc.contributor.authorKurach, Karolpl
dc.contributor.authorRaichuk, Antonpl
dc.contributor.authorStańczyk, Piotrpl
dc.contributor.authorZając, Michał - 220572 pl
dc.contributor.authorBachem, Olivierpl
dc.contributor.authorEspeholt, Lassepl
dc.contributor.authorRiquelme, Carlospl
dc.contributor.authorVincent, Damienpl
dc.contributor.authorMichalski, Marcinpl
dc.contributor.authorBousquet, Olivierpl
dc.contributor.authorGelly, Sylvainpl
dc.date.accessioned2021-02-26T09:24:52Z
dc.date.available2021-02-26T09:24:52Z
dc.date.issued2020pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.conftypeinternationalpl
dc.description.physical4501-4510pl
dc.description.seriesProceedings of the AAAI Conference on Artificial Intelligence
dc.description.seriesnumber4
dc.description.versionostateczna wersja wydawcy
dc.description.volume34pl
dc.identifier.doi10.1609/aaai.v34i04.5878pl
dc.identifier.isbn978-1-57735-835-0pl
dc.identifier.projectROD UJ / Opl
dc.identifier.serieseissn2374-3468
dc.identifier.seriesissn2159-5399
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/265794
dc.languageengpl
dc.pubinfoPalo Alto : AAAI Presspl
dc.rightsDodaję tylko opis bibliograficzny*
dc.rights.licenceInna otwarta licencja
dc.rights.uri*
dc.share.typeinne
dc.subtypeConferenceProceedingspl
dc.titleGoogle research football : a novel reinforcement learning environmentpl
dc.title.containerAAAI -20/IAAI-20/EAAI-20 Proceedings; Thirty-Fourth AAAI Conference on Artificial Intelligence Thirty-Second Conference on Innovative Applications of Artificial Intelligence The Tenth Symposium on Educational Advances in Artificial Intelligenceen
dc.typeBookSectionpl
dspace.entity.typePublication
cris.lastimport.wos
2024-04-09T19:14:06Z
dc.abstract.enpl
Recent progress in the field of reinforcement learning has been accelerated by virtual learning environments such as video games, where novel algorithms and ideas can be quickly tested in a safe and reproducible manner. We introduce the Google Research Football Environment, a new reinforcement learning environment where agents are trained to play football in an advanced, physics-based 3D simulator. The resulting environment is challenging, easy to use and customize, and it is available under a permissive open-source license. In addition, it provides support for multiplayer and multi-agent experiments. We propose three full-game scenarios of varying difficulty with the Football Benchmarks and report baseline results for three commonly used reinforcement algorithms (IMPALA, PPO, and Ape-X DQN). We also provide a diverse set of simpler scenarios with the Football Academy and showcase several promising research directions.
dc.affiliationpl
Wydział Matematyki i Informatyki
dc.conference
The Thirty-Fourth AAAI Conference on Artificial Intelligence
dc.conference.city
New York
dc.conference.country
USA
dc.conference.datefinish
2020-01-12
dc.conference.datestart
2020-02-07
dc.conference.shortcut
AAAI
dc.contributor.authorpl
Kurach, Karol
dc.contributor.authorpl
Raichuk, Anton
dc.contributor.authorpl
Stańczyk, Piotr
dc.contributor.authorpl
Zając, Michał - 220572
dc.contributor.authorpl
Bachem, Olivier
dc.contributor.authorpl
Espeholt, Lasse
dc.contributor.authorpl
Riquelme, Carlos
dc.contributor.authorpl
Vincent, Damien
dc.contributor.authorpl
Michalski, Marcin
dc.contributor.authorpl
Bousquet, Olivier
dc.contributor.authorpl
Gelly, Sylvain
dc.date.accessioned
2021-02-26T09:24:52Z
dc.date.available
2021-02-26T09:24:52Z
dc.date.issuedpl
2020
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.conftypepl
international
dc.description.physicalpl
4501-4510
dc.description.series
Proceedings of the AAAI Conference on Artificial Intelligence
dc.description.seriesnumber
4
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
34
dc.identifier.doipl
10.1609/aaai.v34i04.5878
dc.identifier.isbnpl
978-1-57735-835-0
dc.identifier.projectpl
ROD UJ / O
dc.identifier.serieseissn
2374-3468
dc.identifier.seriesissn
2159-5399
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/265794
dc.languagepl
eng
dc.pubinfopl
Palo Alto : AAAI Press
dc.rights*
Dodaję tylko opis bibliograficzny
dc.rights.licence
Inna otwarta licencja
dc.rights.uri*
dc.share.type
inne
dc.subtypepl
ConferenceProceedings
dc.titlepl
Google research football : a novel reinforcement learning environment
dc.title.containeren
AAAI -20/IAAI-20/EAAI-20 Proceedings; Thirty-Fourth AAAI Conference on Artificial Intelligence Thirty-Second Conference on Innovative Applications of Artificial Intelligence The Tenth Symposium on Educational Advances in Artificial Intelligence
dc.typepl
BookSection
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
13
Views per month
Views per city
Taipei
3
Ashburn
2
Wroclaw
2
Dublin
1
Tokyo
1

No access

No Thumbnail Available