Simple view
Full metadata view
Authors
Statistics
Vertex deletion into bipartite permutation graphs
permutation graphs
comparability graphs
partially ordered set
graph modification problems
A permutation graph can be defined as an intersection graph of segments whose endpoints lie on two parallel lines 𝓁₁ and 𝓁₂, one on each. A bipartite permutation graph is a permutation graph which is bipartite. In this paper we study the parameterized complexity of the bipartite permutation vertex deletion problem, which asks, for a given n-vertex graph, whether we can remove at most k vertices to obtain a bipartite permutation graph. This problem is NP-complete by the classical result of Lewis and Yannakakis [John M. Lewis and Mihalis Yannakakis, 1980]. We analyze the structure of the so-called almost bipartite permutation graphs which may contain holes (large induced cycles) in contrast to bipartite permutation graphs. We exploit the structural properties of the shortest hole in a such graph. We use it to obtain an algorithm for the bipartite permutation vertex deletion problem with running time f(k)n^O(1), and also give a polynomial-time 9-approximation algorithm.
dc.abstract.en | A permutation graph can be defined as an intersection graph of segments whose endpoints lie on two parallel lines 𝓁₁ and 𝓁₂, one on each. A bipartite permutation graph is a permutation graph which is bipartite. In this paper we study the parameterized complexity of the bipartite permutation vertex deletion problem, which asks, for a given n-vertex graph, whether we can remove at most k vertices to obtain a bipartite permutation graph. This problem is NP-complete by the classical result of Lewis and Yannakakis [John M. Lewis and Mihalis Yannakakis, 1980]. We analyze the structure of the so-called almost bipartite permutation graphs which may contain holes (large induced cycles) in contrast to bipartite permutation graphs. We exploit the structural properties of the shortest hole in a such graph. We use it to obtain an algorithm for the bipartite permutation vertex deletion problem with running time f(k)n^O(1), and also give a polynomial-time 9-approximation algorithm. | pl |
dc.affiliation | Wydział Matematyki i Informatyki : Instytut Informatyki Analitycznej | pl |
dc.affiliation | Szkoła Doktorska Nauk Ścisłych i Przyrodniczych | pl |
dc.conference | 15th International Symposium on Parameterized and Exact Computation (IPEC 2020) | |
dc.conference.city | Hong Kong | |
dc.conference.country | Chiny | |
dc.conference.datefinish | 2020-12-18 | |
dc.conference.datestart | 2020-12-14 | |
dc.conference.shortcut | IPEC | |
dc.contributor.author | Bożyk, Łukasz | pl |
dc.contributor.author | Derbisz, Jan - 244282 | pl |
dc.contributor.author | Krawczyk, Tomasz - 129445 | pl |
dc.contributor.author | Novotná, Jana | pl |
dc.contributor.author | Okrasa, Karolina | pl |
dc.date.accessioned | 2020-12-28T12:23:52Z | |
dc.date.available | 2020-12-28T12:23:52Z | |
dc.date.issued | 2020 | pl |
dc.date.openaccess | 0 | |
dc.description.accesstime | w momencie opublikowania | |
dc.description.conftype | international | pl |
dc.description.physical | 5:1-5:16 | pl |
dc.description.publication | 0,9 | pl |
dc.description.series | LIPIcs - Leibniz International Proceedings in Informatics | |
dc.description.seriesnumber | Vol. 180 | |
dc.description.version | ostateczna wersja wydawcy | |
dc.identifier.doi | 10.4230/LIPIcs.IPEC.2020.5 | pl |
dc.identifier.isbn | 978-3-95977-172-6 | pl |
dc.identifier.project | UMO-2015/17/B/ST6/01873 | pl |
dc.identifier.project | ROD UJ / OP | pl |
dc.identifier.seriesissn | 1868-8969 | |
dc.identifier.uri | https://ruj.uj.edu.pl/xmlui/handle/item/259372 | |
dc.language | eng | pl |
dc.language.container | eng | pl |
dc.pubinfo | Dagstuhl : Schloss Dagstuhl - Leibniz-Zentrum für Informatik | pl |
dc.rights | Udzielam licencji. Uznanie autorstwa - Bez utworów zależnych 3.0 | * |
dc.rights.licence | CC-BY | |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/legalcode | * |
dc.share.type | otwarte czasopismo | |
dc.subject.en | permutation graphs | pl |
dc.subject.en | comparability graphs | pl |
dc.subject.en | partially ordered set | pl |
dc.subject.en | graph modification problems | pl |
dc.subtype | ConferenceProceedings | pl |
dc.title | Vertex deletion into bipartite permutation graphs | pl |
dc.title.container | 15th International Symposium on Parameterized and Exact Computation (IPEC 2020) | pl |
dc.type | BookSection | pl |
dspace.entity.type | Publication |
* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.
Views
20
Views per month
Views per city
Downloads
Open Access