An Open-Access dataset of thorough QT studies results

2020
journal article
article
4
dc.abstract.enAlong with the current interest in changes of cardiovascular risk assessment strategy and inclusion of in silico modelling into the applicable paradigm, the need for data has increased, both for model generation and testing. Data collection is often time-consuming but an inevitable step in the modelling process, requiring extensive literature searches and other identification of alternative resources providing complementary results. The next step, namely data extraction, can also be challenging. Here we present a collection of thorough QT/QTc (TQT) study results with detailed descriptions of study design, pharmacokinetics, and pharmacodynamic endpoints. The presented dataset provides information that can be further utilized to assess the predictive performance of di erent preclinical biomarkers for QT prolongation e ects with the use of various modelling approaches. As the exposure levels and population description are included, the study design and characteristics of the study population can be recovered precisely in the simulation. Another possible application of the TQT dataset is the analysis of drug characteristic/QT prolongation/TdP (torsade de pointes) relationship after the integration of provided information with other databases and tools. This includes drug cardiac safety classifications (e.g., CredibleMeds), Comprehensive in vitro Proarrhythmia Assay (CiPA) compounds classification, as well as those containing information on physico-chemical properties or absorption, distribution, metabolism, excretion (ADME) data like PubChem or DrugBank.pl
dc.affiliationWydział Farmaceutyczny : Zakład Farmacji Społecznejpl
dc.cm.date2020-12-02
dc.cm.id99437
dc.contributor.authorWiśniowska, Barbara - 148047 pl
dc.contributor.authorTylutki, Zofia - 163802 pl
dc.contributor.authorPolak, Sebastian - 133197 pl
dc.date.accession2020-07-06pl
dc.date.accessioned2020-12-02T10:28:10Zpl
dc.date.available2020-12-02T10:28:10Zpl
dc.date.issued2020pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number1pl
dc.description.points20pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume5pl
dc.identifier.articleid10pl
dc.identifier.doi10.3390/data5010010pl
dc.identifier.eissn2306-5729pl
dc.identifier.projectROD UJ / OPpl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/257590
dc.identifier.weblinkhttps://www.mdpi.com/2306-5729/5/1/10pl
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl*
dc.share.typeotwarte czasopismo
dc.subject.enthorough QTpl
dc.subject.enTQTpl
dc.subject.enproarrythmic potentialpl
dc.subject.endatasetpl
dc.subtypeArticlepl
dc.titleAn Open-Access dataset of thorough QT studies resultspl
dc.title.journalDatapl
dc.typeJournalArticlepl
dspace.entity.typePublication
dc.abstract.enpl
Along with the current interest in changes of cardiovascular risk assessment strategy and inclusion of in silico modelling into the applicable paradigm, the need for data has increased, both for model generation and testing. Data collection is often time-consuming but an inevitable step in the modelling process, requiring extensive literature searches and other identification of alternative resources providing complementary results. The next step, namely data extraction, can also be challenging. Here we present a collection of thorough QT/QTc (TQT) study results with detailed descriptions of study design, pharmacokinetics, and pharmacodynamic endpoints. The presented dataset provides information that can be further utilized to assess the predictive performance of di erent preclinical biomarkers for QT prolongation e ects with the use of various modelling approaches. As the exposure levels and population description are included, the study design and characteristics of the study population can be recovered precisely in the simulation. Another possible application of the TQT dataset is the analysis of drug characteristic/QT prolongation/TdP (torsade de pointes) relationship after the integration of provided information with other databases and tools. This includes drug cardiac safety classifications (e.g., CredibleMeds), Comprehensive in vitro Proarrhythmia Assay (CiPA) compounds classification, as well as those containing information on physico-chemical properties or absorption, distribution, metabolism, excretion (ADME) data like PubChem or DrugBank.
dc.affiliationpl
Wydział Farmaceutyczny : Zakład Farmacji Społecznej
dc.cm.date
2020-12-02
dc.cm.id
99437
dc.contributor.authorpl
Wiśniowska, Barbara - 148047
dc.contributor.authorpl
Tylutki, Zofia - 163802
dc.contributor.authorpl
Polak, Sebastian - 133197
dc.date.accessionpl
2020-07-06
dc.date.accessionedpl
2020-12-02T10:28:10Z
dc.date.availablepl
2020-12-02T10:28:10Z
dc.date.issuedpl
2020
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.numberpl
1
dc.description.pointspl
20
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
5
dc.identifier.articleidpl
10
dc.identifier.doipl
10.3390/data5010010
dc.identifier.eissnpl
2306-5729
dc.identifier.projectpl
ROD UJ / OP
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/257590
dc.identifier.weblinkpl
https://www.mdpi.com/2306-5729/5/1/10
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
otwarte czasopismo
dc.subject.enpl
thorough QT
dc.subject.enpl
TQT
dc.subject.enpl
proarrythmic potential
dc.subject.enpl
dataset
dc.subtypepl
Article
dc.titlepl
An Open-Access dataset of thorough QT studies results
dc.title.journalpl
Data
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
18
Views per month
Views per city
Koscielisko
4
Ashburn
3
Dublin
2
Wroclaw
2
Chandler
1
Downloads
wisniowska_et-al_an_open-access_dataset_of_thorough_2020.pdf
20