Constrained variational-hemivariationalinequalities on nonconvex star-shaped sets

2020
journal article
article
3
dc.abstract.enIn this paper, we study a class of constrained variational–hemivariational inequality problems with nonconvex sets which are star-shaped with respect to a certain ball in a reflexive Banach space. The inequality is a fully nonconvex counterpart of the variational–hemivariational inequality of elliptic type since it contains both, a convex potential and a locally Lipschitz one. Two new results on the existence of a solution are proved by a penalty method applied to a variational–hemivariational inequality penalized by the generalized directional derivative of the distance function of the constraint set. In the first existence theorem, the strong monotonicity of the governing operator and a relaxed monotonicity condition of the Clarke subgradient are assumed. In the second existence result, these two hypotheses are relaxed and a suitable hypothesis on the upper semicontinuity of the operator is adopted. In both results, the penalized problems are solved by using the Knaster, Kuratowski, and Mazurkiewicz (KKM) lemma. For a suffciently small penalty parameter, the solution to the penalized problem solves also the original one. Finally, we work out an example on the interior and boundary semipermeability problem that ilustrate the applicability of our results.pl
dc.affiliationWydział Matematyki i Informatyki : Katedra Teorii Optymalizacji i Sterowaniapl
dc.contributor.authorMigórski, Stanisław - 130585 pl
dc.contributor.authorFengzhen, Longpl
dc.date.accessioned2020-11-08T17:46:33Z
dc.date.available2020-11-08T17:46:33Z
dc.date.issued2020pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.versionostateczna wersja wydawcy
dc.description.volume8pl
dc.identifier.articleid1824pl
dc.identifier.doi10.3390/math8101824pl
dc.identifier.issn2227-7390pl
dc.identifier.project823731 CONMECHpl
dc.identifier.project4004/GGPJII/H2020/2018/0pl
dc.identifier.project440328/PnH2/2019pl
dc.identifier.projectROD UJ / OPpl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/252956
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl*
dc.share.typeotwarte czasopismo
dc.subtypeArticlepl
dc.titleConstrained variational-hemivariationalinequalities on nonconvex star-shaped setspl
dc.title.journalMathematicspl
dc.typeJournalArticlepl
dspace.entity.typePublication
dc.abstract.enpl
In this paper, we study a class of constrained variational–hemivariational inequality problems with nonconvex sets which are star-shaped with respect to a certain ball in a reflexive Banach space. The inequality is a fully nonconvex counterpart of the variational–hemivariational inequality of elliptic type since it contains both, a convex potential and a locally Lipschitz one. Two new results on the existence of a solution are proved by a penalty method applied to a variational–hemivariational inequality penalized by the generalized directional derivative of the distance function of the constraint set. In the first existence theorem, the strong monotonicity of the governing operator and a relaxed monotonicity condition of the Clarke subgradient are assumed. In the second existence result, these two hypotheses are relaxed and a suitable hypothesis on the upper semicontinuity of the operator is adopted. In both results, the penalized problems are solved by using the Knaster, Kuratowski, and Mazurkiewicz (KKM) lemma. For a suffciently small penalty parameter, the solution to the penalized problem solves also the original one. Finally, we work out an example on the interior and boundary semipermeability problem that ilustrate the applicability of our results.
dc.affiliationpl
Wydział Matematyki i Informatyki : Katedra Teorii Optymalizacji i Sterowania
dc.contributor.authorpl
Migórski, Stanisław - 130585
dc.contributor.authorpl
Fengzhen, Long
dc.date.accessioned
2020-11-08T17:46:33Z
dc.date.available
2020-11-08T17:46:33Z
dc.date.issuedpl
2020
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
8
dc.identifier.articleidpl
1824
dc.identifier.doipl
10.3390/math8101824
dc.identifier.issnpl
2227-7390
dc.identifier.projectpl
823731 CONMECH
dc.identifier.projectpl
4004/GGPJII/H2020/2018/0
dc.identifier.projectpl
440328/PnH2/2019
dc.identifier.projectpl
ROD UJ / OP
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/252956
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
otwarte czasopismo
dc.subtypepl
Article
dc.titlepl
Constrained variational-hemivariationalinequalities on nonconvex star-shaped sets
dc.title.journalpl
Mathematics
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
18
Views per month
Views per city
Dublin
4
Chandler
3
Ashburn
2
Wroclaw
2
Downloads
migorski_fengzhen_constrained_variational-hemivariational_2020.pdf
17