Pointed subspace approach to incomplete data

2020
journal article
article
dc.abstract.enIncomplete data are often represented as vectors with filled missing attributes joined with flag vectors indicating missing components. In this paper, we generalize this approach and represent incomplete data as pointed affine subspaces. This allows to perform various affine transformations of data, such as whitening or dimensionality reduction. Moreover, this representation preserves the information, which coordinates were missing. To use our representation in practical classification tasks, we embed such generalized missing data into a vector space and define the scalar product of embedding space. Our representation is easy to implement, and can be used together with typical kernel methods. Performed experiments show that the application of SVM classifier on the proposed subspace approach obtains highly accurate results.pl
dc.affiliationWydział Matematyki i Informatyki : Instytut Informatyki i Matematyki Komputerowejpl
dc.affiliationWydział Matematyki i Informatyki : Instytut Matematykipl
dc.contributor.authorStruski, Łukasz - 135994 pl
dc.contributor.authorŚmieja, Marek - 135996 pl
dc.contributor.authorTabor, Jacek - 132362 pl
dc.date.accessioned2020-10-29T18:31:54Z
dc.date.available2020-10-29T18:31:54Z
dc.date.issued2020pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.physical42-57pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume37pl
dc.identifier.doi10.1007/s00357-019-9304-3pl
dc.identifier.eissn1432-1343pl
dc.identifier.issn0176-4268pl
dc.identifier.project2015/19/B/ST6/01819pl
dc.identifier.projectROD UJ / OPpl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/251875
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl*
dc.share.typeinne
dc.subject.otherincomplete datapl
dc.subject.otherSVMpl
dc.subject.otherlinear transformationspl
dc.subject.otherimputationpl
dc.subject.othermissing valuespl
dc.subtypeArticlepl
dc.titlePointed subspace approach to incomplete datapl
dc.title.journalJournal of classificationpl
dc.typeJournalArticlepl
dspace.entity.typePublication
dc.abstract.enpl
Incomplete data are often represented as vectors with filled missing attributes joined with flag vectors indicating missing components. In this paper, we generalize this approach and represent incomplete data as pointed affine subspaces. This allows to perform various affine transformations of data, such as whitening or dimensionality reduction. Moreover, this representation preserves the information, which coordinates were missing. To use our representation in practical classification tasks, we embed such generalized missing data into a vector space and define the scalar product of embedding space. Our representation is easy to implement, and can be used together with typical kernel methods. Performed experiments show that the application of SVM classifier on the proposed subspace approach obtains highly accurate results.
dc.affiliationpl
Wydział Matematyki i Informatyki : Instytut Informatyki i Matematyki Komputerowej
dc.affiliationpl
Wydział Matematyki i Informatyki : Instytut Matematyki
dc.contributor.authorpl
Struski, Łukasz - 135994
dc.contributor.authorpl
Śmieja, Marek - 135996
dc.contributor.authorpl
Tabor, Jacek - 132362
dc.date.accessioned
2020-10-29T18:31:54Z
dc.date.available
2020-10-29T18:31:54Z
dc.date.issuedpl
2020
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.physicalpl
42-57
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
37
dc.identifier.doipl
10.1007/s00357-019-9304-3
dc.identifier.eissnpl
1432-1343
dc.identifier.issnpl
0176-4268
dc.identifier.projectpl
2015/19/B/ST6/01819
dc.identifier.projectpl
ROD UJ / OP
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/251875
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
inne
dc.subject.otherpl
incomplete data
dc.subject.otherpl
SVM
dc.subject.otherpl
linear transformations
dc.subject.otherpl
imputation
dc.subject.otherpl
missing values
dc.subtypepl
Article
dc.titlepl
Pointed subspace approach to incomplete data
dc.title.journalpl
Journal of classification
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
10
Views per month
Views per city
Ashburn
2
Wroclaw
2
Chandler
1
Dublin
1
Downloads
struski__smieja_tabor_pointed_subspace_approach_toIncom_2020.pdf
7
struski__smieja_tabor_pointed_subspace_approach_toIncom_2020.docx
1