Regularity of solutions to the quaternionic Monge-Ampère equation
pl
dc.type
JournalArticle
pl
dc.description.physical
2852-2864
pl
dc.abstract.en
The regularity of solutions to the Dirichlet problem for the quaternionic Monge-Ampère equation is discussed. We prove that the solution to the Dirichlet problem is Hölder continuous under some conditions on the boundary values and the quaternionic Monge-Ampère density from Lp(Ω) for p>2. As a step towards the proof, we provide a refined version of stability for the weak solutions to this equation.
pl
dc.subject.en
Monge-Ampere equation
pl
dc.subject.en
pluripotential theory
pl
dc.subject.en
subharmonic functions
pl
dc.description.volume
30
pl
dc.identifier.doi
10.1007/s12220-020-00394-2
pl
dc.identifier.eissn
1559-002X
pl
dc.title.journal
Journal of Geometric Analysis
pl
dc.language.container
eng
pl
dc.affiliation
Wydział Matematyki i Informatyki : Instytut Matematyki
pl
dc.subtype
Article
pl
dc.rights.original
CC-BY; inne; ostateczna wersja wydawcy; w momencie opublikowania; 0