Computational modeling and synthesis of pyridine variants of benzoyl-phenoxy-acetamide with high glioblastoma cytotoxicity and brain tumor penetration

2023
journal article
article
3
cris.lastimport.wos2024-04-10T00:27:59Z
dc.abstract.enGlioblastomas are highly aggressive brain tumors for which therapeutic options are very limited. In a quest for new anti-glioblastoma drugs, we focused on specific structural modifications to the benzoyl-phenoxy-acetamide (BPA) structure present in a common lipid-lowering drug, fenofibrate, and in our first prototype glioblastoma drug, PP1. Here, we propose extensive computational analyses to improve the selection of the most effective glioblastoma drug candidates. Initially, over 100 structural BPA variations were analyzed and their physicochemical properties, such as water solubility (− logS), calculated partition coefficient (ClogP), probability for BBB crossing (BBB_SCORE), probability for CNS penetration (CNS-MPO) and calculated cardiotoxicity (hERG), were evaluated. This integrated approach allowed us to select pyridine variants of BPA that show improved BBB penetration, water solubility, and low cardiotoxicity. Herein the top 24 compounds were synthesized and analyzed in cell culture. Six of them demonstrated glioblastoma toxicity with IC50 ranging from 0.59 to 3.24 µM. Importantly, one of the compounds, HR68, accumulated in the brain tumor tissue at 3.7 ± 0.5 µM, which exceeds its glioblastoma IC50 (1.17 µM) by over threefold.pl
dc.affiliationWydział Biochemii, Biofizyki i Biotechnologii : Zakład Biologii Komórkipl
dc.contributor.authorIngraham IV, Charles H.pl
dc.contributor.authorStalińska, Joanna - 193467 pl
dc.contributor.authorCarson, Sean C.pl
dc.contributor.authorColley, Susan B.pl
dc.contributor.authorRak, Monika - 104354 pl
dc.contributor.authorLassak, Adampl
dc.contributor.authorPeruzzi, Francescapl
dc.contributor.authorReiss, Krzysztofpl
dc.contributor.authorJursic, Branko S.pl
dc.date.accessioned2023-09-25T12:40:39Z
dc.date.available2023-09-25T12:40:39Z
dc.date.issued2023pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.additionalBibliogr.pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume13pl
dc.identifier.articleid12236pl
dc.identifier.doi10.1038/s41598-023-39236-wpl
dc.identifier.eissn2045-2322pl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/319712
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl*
dc.share.typeotwarte czasopismo
dc.source.integratorfalse
dc.subtypeArticlepl
dc.titleComputational modeling and synthesis of pyridine variants of benzoyl-phenoxy-acetamide with high glioblastoma cytotoxicity and brain tumor penetrationpl
dc.title.journalScientific Reportspl
dc.typeJournalArticlepl
dspace.entity.typePublication
cris.lastimport.wos
2024-04-10T00:27:59Z
dc.abstract.enpl
Glioblastomas are highly aggressive brain tumors for which therapeutic options are very limited. In a quest for new anti-glioblastoma drugs, we focused on specific structural modifications to the benzoyl-phenoxy-acetamide (BPA) structure present in a common lipid-lowering drug, fenofibrate, and in our first prototype glioblastoma drug, PP1. Here, we propose extensive computational analyses to improve the selection of the most effective glioblastoma drug candidates. Initially, over 100 structural BPA variations were analyzed and their physicochemical properties, such as water solubility (− logS), calculated partition coefficient (ClogP), probability for BBB crossing (BBB_SCORE), probability for CNS penetration (CNS-MPO) and calculated cardiotoxicity (hERG), were evaluated. This integrated approach allowed us to select pyridine variants of BPA that show improved BBB penetration, water solubility, and low cardiotoxicity. Herein the top 24 compounds were synthesized and analyzed in cell culture. Six of them demonstrated glioblastoma toxicity with IC50 ranging from 0.59 to 3.24 µM. Importantly, one of the compounds, HR68, accumulated in the brain tumor tissue at 3.7 ± 0.5 µM, which exceeds its glioblastoma IC50 (1.17 µM) by over threefold.
dc.affiliationpl
Wydział Biochemii, Biofizyki i Biotechnologii : Zakład Biologii Komórki
dc.contributor.authorpl
Ingraham IV, Charles H.
dc.contributor.authorpl
Stalińska, Joanna - 193467
dc.contributor.authorpl
Carson, Sean C.
dc.contributor.authorpl
Colley, Susan B.
dc.contributor.authorpl
Rak, Monika - 104354
dc.contributor.authorpl
Lassak, Adam
dc.contributor.authorpl
Peruzzi, Francesca
dc.contributor.authorpl
Reiss, Krzysztof
dc.contributor.authorpl
Jursic, Branko S.
dc.date.accessioned
2023-09-25T12:40:39Z
dc.date.available
2023-09-25T12:40:39Z
dc.date.issuedpl
2023
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.additionalpl
Bibliogr.
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
13
dc.identifier.articleidpl
12236
dc.identifier.doipl
10.1038/s41598-023-39236-w
dc.identifier.eissnpl
2045-2322
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/319712
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
otwarte czasopismo
dc.source.integrator
false
dc.subtypepl
Article
dc.titlepl
Computational modeling and synthesis of pyridine variants of benzoyl-phenoxy-acetamide with high glioblastoma cytotoxicity and brain tumor penetration
dc.title.journalpl
Scientific Reports
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
4
Views per month
Views per city
Krakow
1
Downloads
stalinska_rak_et-al_computational_modeling_and_synthesis_2023.pdf
27