Elastic planetoids

2025
journal article
article
dc.abstract.enModeling the internal structure of self-gravitating solid and liquid bodies presents a challenge, as existing approaches are often limited to either overly simplistic constant-density approximations or more complex numerical equations of state (EOSs). We present a detailed analysis of a tractable and physically motivated model for perfectly elastic, spherically symmetric self-gravitating bodies in hydrostatic equilibrium. The model employs a logarithmic equation of state (often referred to as a logotropic EOS) with a nonzero initial density and constant bulk modulus. Importantly, the scaling properties of the model allow all solutions to be derived from a single, universal solution of an ordinary differential equation, resembling the Lane–Emden and Chandrasekhar models. The model provides new insights into stability issues and reveals oscillatory asymptotic behavior in the mass–radius relation, including the existence of both a maximum mass and a maximum radius. We derive useful, simple analytical approximations for key properties, such as central overdensity, moment of inertia, binding energy, and gravitational potential, applicable to small, metallic bodies like asteroids and moons. These new approximations could aid future research, including space mining and the scientific characterization of small solar system bodies.
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki Teoretycznej
dc.contributor.authorŻbik, Bartosz
dc.contributor.authorOdrzywołek, Andrzej - 131140
dc.date.accessioned2025-08-06T09:18:03Z
dc.date.available2025-08-06T09:18:03Z
dc.date.createdat2025-08-04T07:24:51Zen
dc.date.issued2025
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number2
dc.description.versionostateczna wersja wydawcy
dc.description.volume988
dc.identifier.articleid267
dc.identifier.doi10.3847/1538-4357/ade8ef
dc.identifier.eissn1538-4357
dc.identifier.issn0004-637X
dc.identifier.projectDRC AI
dc.identifier.urihttps://ruj.uj.edu.pl/handle/item/558768
dc.languageeng
dc.language.containereng
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.typeotwarte czasopismo
dc.subtypeArticle
dc.titleElastic planetoids
dc.title.journalAstrophysical Journal
dc.typeJournalArticle
dspace.entity.typePublicationen
dc.abstract.en
Modeling the internal structure of self-gravitating solid and liquid bodies presents a challenge, as existing approaches are often limited to either overly simplistic constant-density approximations or more complex numerical equations of state (EOSs). We present a detailed analysis of a tractable and physically motivated model for perfectly elastic, spherically symmetric self-gravitating bodies in hydrostatic equilibrium. The model employs a logarithmic equation of state (often referred to as a logotropic EOS) with a nonzero initial density and constant bulk modulus. Importantly, the scaling properties of the model allow all solutions to be derived from a single, universal solution of an ordinary differential equation, resembling the Lane–Emden and Chandrasekhar models. The model provides new insights into stability issues and reveals oscillatory asymptotic behavior in the mass–radius relation, including the existence of both a maximum mass and a maximum radius. We derive useful, simple analytical approximations for key properties, such as central overdensity, moment of inertia, binding energy, and gravitational potential, applicable to small, metallic bodies like asteroids and moons. These new approximations could aid future research, including space mining and the scientific characterization of small solar system bodies.
dc.affiliation
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki Teoretycznej
dc.contributor.author
Żbik, Bartosz
dc.contributor.author
Odrzywołek, Andrzej - 131140
dc.date.accessioned
2025-08-06T09:18:03Z
dc.date.available
2025-08-06T09:18:03Z
dc.date.createdaten
2025-08-04T07:24:51Z
dc.date.issued
2025
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.number
2
dc.description.version
ostateczna wersja wydawcy
dc.description.volume
988
dc.identifier.articleid
267
dc.identifier.doi
10.3847/1538-4357/ade8ef
dc.identifier.eissn
1538-4357
dc.identifier.issn
0004-637X
dc.identifier.project
DRC AI
dc.identifier.uri
https://ruj.uj.edu.pl/handle/item/558768
dc.language
eng
dc.language.container
eng
dc.rights
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
otwarte czasopismo
dc.subtype
Article
dc.title
Elastic planetoids
dc.title.journal
Astrophysical Journal
dc.type
JournalArticle
dspace.entity.typeen
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
18
Views per month
Views per city
Krakow
5
Liszki
3
Dublin
1
Singapore
1
Downloads
zbik_odrzywolek_elastic_planetoids_2025.pdf
16