Transcendence and Normality of Complex Numbers via Hurwitz Continued Fractions

2024
journal article
article
3
dc.abstract.enWe study the topological, dynamical, and descriptive set-theoretic properties of Hurwitz continued fractions. Hurwitz continued fractions associate an infinite sequence of Gaussian integers to every complex number that is not a Gaussian rational. The resulting space of sequences of Gaussian integers $\Omega$ is not closed. Using an iterative procedure, we show that $\Omega$ contains a natural subset whose closure R encodes continued fraction expansions of complex numbers that are not Gaussian rationals. We prove that (R,σ) is a subshift with a feeble specification property. As an application, we determine the rank in the Borel hierarchy of the set of Hurwitz normal numbers with respect to the complex Gauss measure. We also construct a family of complex transcendental numbers with bounded partial quotients.
dc.affiliationWydział Matematyki i Informatyki : Instytut Matematyki
dc.contributor.authorGarcia Ramos Aguilar, Felipe - 476744
dc.contributor.authorGonzález Robert, Gerardo
dc.contributor.authorHussain, Mumtaz
dc.date.accession2025-08-04
dc.date.accessioned2025-08-04T08:51:19Z
dc.date.available2025-08-04T08:51:19Z
dc.date.createdat2025-07-30T06:27:32Zen
dc.date.issued2024
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number23
dc.description.physical14289–14320
dc.description.sponsorshipidubidub_yes
dc.description.versionostateczna wersja wydawcy
dc.description.volume2024
dc.identifier.doi10.1093/imrn/rnae240
dc.identifier.eissn1687-0247
dc.identifier.issn1073-7928
dc.identifier.projectU1U/W16/NO/01.03
dc.identifier.projectK/NCN/000198
dc.identifier.projectDRC AI
dc.identifier.urihttps://ruj.uj.edu.pl/handle/item/558685
dc.languageeng
dc.language.containereng
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.typeinne
dc.subtypeArticle
dc.titleTranscendence and Normality of Complex Numbers via Hurwitz Continued Fractions
dc.title.journalInternational Mathematics Research Notices
dc.typeJournalArticle
dspace.entity.typePublicationen
dc.abstract.en
We study the topological, dynamical, and descriptive set-theoretic properties of Hurwitz continued fractions. Hurwitz continued fractions associate an infinite sequence of Gaussian integers to every complex number that is not a Gaussian rational. The resulting space of sequences of Gaussian integers $\Omega$ is not closed. Using an iterative procedure, we show that $\Omega$ contains a natural subset whose closure R encodes continued fraction expansions of complex numbers that are not Gaussian rationals. We prove that (R,σ) is a subshift with a feeble specification property. As an application, we determine the rank in the Borel hierarchy of the set of Hurwitz normal numbers with respect to the complex Gauss measure. We also construct a family of complex transcendental numbers with bounded partial quotients.
dc.affiliation
Wydział Matematyki i Informatyki : Instytut Matematyki
dc.contributor.author
Garcia Ramos Aguilar, Felipe - 476744
dc.contributor.author
González Robert, Gerardo
dc.contributor.author
Hussain, Mumtaz
dc.date.accession
2025-08-04
dc.date.accessioned
2025-08-04T08:51:19Z
dc.date.available
2025-08-04T08:51:19Z
dc.date.createdaten
2025-07-30T06:27:32Z
dc.date.issued
2024
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.number
23
dc.description.physical
14289–14320
dc.description.sponsorshipidub
idub_yes
dc.description.version
ostateczna wersja wydawcy
dc.description.volume
2024
dc.identifier.doi
10.1093/imrn/rnae240
dc.identifier.eissn
1687-0247
dc.identifier.issn
1073-7928
dc.identifier.project
U1U/W16/NO/01.03
dc.identifier.project
K/NCN/000198
dc.identifier.project
DRC AI
dc.identifier.uri
https://ruj.uj.edu.pl/handle/item/558685
dc.language
eng
dc.language.container
eng
dc.rights
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
inne
dc.subtype
Article
dc.title
Transcendence and Normality of Complex Numbers via Hurwitz Continued Fractions
dc.title.journal
International Mathematics Research Notices
dc.type
JournalArticle
dspace.entity.typeen
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
9
Views per month
Views per city
Krakow
4
Dalian
1
Mexico City
1
Downloads
garcia_et-al_transcendence_and _normality_of_complex_numbers_2024.pdf
10