Infrared imaging combined with machine learning for detection of the (pre)invasive pancreatic neoplasia

2025
journal article
article
dc.abstract.enWith the challenge of limited early stage detection and a resulting five-year survival rate of only 13%, pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal cancers. Replacing the high-cost and time-consuming grading of pancreatic samples by pathologists with automated diagnostic approaches can revolutionize PDAC detection and thus accelerate patient admission into the clinical setting for treatment. To address this unmet diagnostic need and facilitate the shift of tissue screening toward automated systems, we combined stain-free histology─specifically, Fourier-transform infrared (FT-IR) imaging─with machine learning. The obtained stain-free model was trained to distinguish between normal, benign, and malignant areas in analyzed specimens using hematoxylin and eosin stained pancreatic tissues isolated from KC ($Kras^{G12D/+}$; Pdx1-Cre) or KPC mice ($Kras^{G12D/+}$; $Trp53^{R172H/+}$; Pdx1-Cre). Due to the pancreas-specific mosaic expression of the mutant Kras and Trp53 genes, changes in pancreatic tissues of this mouse model of PDAC closely mirror the gradual transformation of normal pancreatic epithelia into (pre)malignant structures. Thus, this mouse model provides a reliable representation of human disease progression, which we tracked in our study with a Random Forest classifier to achieve accurate detection at the cellular level. This approach yielded a comprehensive model that distinguishes normal pancreatic tissues from pathological features such as pancreatic intraepithelial neoplasia (PanIN), cancerous regions, hemorrhages, and collagen fibers, as well as a streamlined model designed to rapidly identify normal tissues versus pathologically altered regions, including PanINs. These models offer highly accurate diagnostic tools for the early detection of pancreatic malignancies, thus significantly improving the chance for timely therapeutic intervention against PDAC.
dc.affiliationWydział Biochemii, Biofizyki i Biotechnologii : Zakład Biologii Komórki
dc.affiliationPion Prorektora ds. badań naukowych : Małopolskie Centrum Biotechnologii
dc.affiliationPion Prorektora ds. badań naukowych : Narodowe Centrum Promieniowania Synchrotronowego SOLARIS
dc.affiliationSzkoła Doktorska Nauk Ścisłych i Przyrodniczych
dc.contributor.authorLiberda-Matyja, Danuta - 226686
dc.contributor.authorStopa, Kinga - 245029
dc.contributor.authorKrzysztofik, Daria - 237811
dc.contributor.authorFerdek, Paweł - 104022
dc.contributor.authorJakubowska, Monika - 135866
dc.contributor.authorWróbel, Tomasz - 107687
dc.date.accessioned2025-04-28T15:57:37Z
dc.date.available2025-04-28T15:57:37Z
dc.date.createdat2025-04-17T09:25:39Zen
dc.date.issued2025
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.additionalBibliogr. s. 1104-1105. Kinga Stopa podpisana: Kinga B. Stopa. Paweł Ferdek podpisany: Paweł E. Ferdek. Monika Jakubowska podpisana: Monika A. Jakubowska. Tomasz Wróbel podpisany: Tomasz P. Wróbel
dc.description.number4
dc.description.physical1096-1105
dc.description.versionostateczna wersja wydawcy
dc.description.volume8
dc.identifier.doi10.1021/acsptsci.4c00689
dc.identifier.doidataset10.57903/UJ/ LE4EHK
dc.identifier.eissn2575-9108
dc.identifier.urihttps://ruj.uj.edu.pl/handle/item/551893
dc.languageeng
dc.language.containereng
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.typeinne
dc.subject.endigital pathology
dc.subject.enhistopathology
dc.subject.eninfrared imaging
dc.subject.enmouse models of pancreatic cancer
dc.subject.enmachine learning
dc.subject.enpancreatic intraepithelial neoplasia
dc.subject.enpancreatic cancer
dc.subtypeArticle
dc.titleInfrared imaging combined with machine learning for detection of the (pre)invasive pancreatic neoplasia
dc.title.journalACS Pharmacology and Translational Science
dc.typeJournalArticle
dspace.entity.typePublicationen
dc.abstract.en
With the challenge of limited early stage detection and a resulting five-year survival rate of only 13%, pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal cancers. Replacing the high-cost and time-consuming grading of pancreatic samples by pathologists with automated diagnostic approaches can revolutionize PDAC detection and thus accelerate patient admission into the clinical setting for treatment. To address this unmet diagnostic need and facilitate the shift of tissue screening toward automated systems, we combined stain-free histology─specifically, Fourier-transform infrared (FT-IR) imaging─with machine learning. The obtained stain-free model was trained to distinguish between normal, benign, and malignant areas in analyzed specimens using hematoxylin and eosin stained pancreatic tissues isolated from KC ($Kras^{G12D/+}$; Pdx1-Cre) or KPC mice ($Kras^{G12D/+}$; $Trp53^{R172H/+}$; Pdx1-Cre). Due to the pancreas-specific mosaic expression of the mutant Kras and Trp53 genes, changes in pancreatic tissues of this mouse model of PDAC closely mirror the gradual transformation of normal pancreatic epithelia into (pre)malignant structures. Thus, this mouse model provides a reliable representation of human disease progression, which we tracked in our study with a Random Forest classifier to achieve accurate detection at the cellular level. This approach yielded a comprehensive model that distinguishes normal pancreatic tissues from pathological features such as pancreatic intraepithelial neoplasia (PanIN), cancerous regions, hemorrhages, and collagen fibers, as well as a streamlined model designed to rapidly identify normal tissues versus pathologically altered regions, including PanINs. These models offer highly accurate diagnostic tools for the early detection of pancreatic malignancies, thus significantly improving the chance for timely therapeutic intervention against PDAC.
dc.affiliation
Wydział Biochemii, Biofizyki i Biotechnologii : Zakład Biologii Komórki
dc.affiliation
Pion Prorektora ds. badań naukowych : Małopolskie Centrum Biotechnologii
dc.affiliation
Pion Prorektora ds. badań naukowych : Narodowe Centrum Promieniowania Synchrotronowego SOLARIS
dc.affiliation
Szkoła Doktorska Nauk Ścisłych i Przyrodniczych
dc.contributor.author
Liberda-Matyja, Danuta - 226686
dc.contributor.author
Stopa, Kinga - 245029
dc.contributor.author
Krzysztofik, Daria - 237811
dc.contributor.author
Ferdek, Paweł - 104022
dc.contributor.author
Jakubowska, Monika - 135866
dc.contributor.author
Wróbel, Tomasz - 107687
dc.date.accessioned
2025-04-28T15:57:37Z
dc.date.available
2025-04-28T15:57:37Z
dc.date.createdaten
2025-04-17T09:25:39Z
dc.date.issued
2025
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.additional
Bibliogr. s. 1104-1105. Kinga Stopa podpisana: Kinga B. Stopa. Paweł Ferdek podpisany: Paweł E. Ferdek. Monika Jakubowska podpisana: Monika A. Jakubowska. Tomasz Wróbel podpisany: Tomasz P. Wróbel
dc.description.number
4
dc.description.physical
1096-1105
dc.description.version
ostateczna wersja wydawcy
dc.description.volume
8
dc.identifier.doi
10.1021/acsptsci.4c00689
dc.identifier.doidataset
10.57903/UJ/ LE4EHK
dc.identifier.eissn
2575-9108
dc.identifier.uri
https://ruj.uj.edu.pl/handle/item/551893
dc.language
eng
dc.language.container
eng
dc.rights
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
inne
dc.subject.en
digital pathology
dc.subject.en
histopathology
dc.subject.en
infrared imaging
dc.subject.en
mouse models of pancreatic cancer
dc.subject.en
machine learning
dc.subject.en
pancreatic intraepithelial neoplasia
dc.subject.en
pancreatic cancer
dc.subtype
Article
dc.title
Infrared imaging combined with machine learning for detection of the (pre)invasive pancreatic neoplasia
dc.title.journal
ACS Pharmacology and Translational Science
dc.type
JournalArticle
dspace.entity.typeen
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
36
Views per month
Views per city
Krakow
21
Frankfurt am Main
3
Hong Kong
1