Spectral torsion

2024
journal article
article
3
dc.abstract.enWe introduce a trilinear functional of differential one-forms for a finitely summable regular spectral triple with a noncommutative residue. We demonstrate that for a canonical spectral triple over a closed spin manifold it recovers the torsion of the linear connection. We examine several spectral triples, including Hodge-de Rham, Einstein-Yang-Mills, almost-commutative two-sheeted space, conformally rescaled noncommutative tori, and quantum SU(2) group, showing that the third one has a nonvanishing torsion if nontrivially coupled.
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki Teoretycznej
dc.affiliationSzkoła Doktorska Nauk Ścisłych i Przyrodniczych
dc.contributor.authorDąbrowski, Ludwik
dc.contributor.authorSitarz, Andrzej - 100147
dc.contributor.authorZalecki, Paweł - 244499
dc.date.accessioned2025-02-21T13:32:28Z
dc.date.available2025-02-21T13:32:28Z
dc.date.createdat2025-02-20T22:19:38Zen
dc.date.issued2024
dc.date.openaccess0
dc.description.abstractWe introduce a trilinear functional of differential one-forms for a finitely summable regular spectral triple with a noncommutative residue. We demonstrate that for a canonical spectral triple over a closed spin manifold it recovers the torsion of the linear connection. We examine several spectral triples, including Hodge-de Rham, Einstein-Yang-Mills, almost-commutative two-sheeted space, conformally rescaled noncommutative tori, and quantum SU(2) group, showing that the third one has a nonvanishing torsion if nontrivially coupled.
dc.description.accesstimew momencie opublikowania
dc.description.number5
dc.description.versionostateczna wersja wydawcy
dc.description.volume405
dc.identifier.articleid130
dc.identifier.doi10.1007/s00220-024-04950-7
dc.identifier.eissn1432-0916
dc.identifier.issn0010-3616
dc.identifier.urihttps://ruj.uj.edu.pl/handle/item/549154
dc.languageeng
dc.language.containereng
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.typeinne
dc.subtypeArticle
dc.titleSpectral torsion
dc.title.journalCommunications in Mathematical Physics
dc.typeJournalArticle
dspace.entity.typePublicationen
dc.abstract.en
We introduce a trilinear functional of differential one-forms for a finitely summable regular spectral triple with a noncommutative residue. We demonstrate that for a canonical spectral triple over a closed spin manifold it recovers the torsion of the linear connection. We examine several spectral triples, including Hodge-de Rham, Einstein-Yang-Mills, almost-commutative two-sheeted space, conformally rescaled noncommutative tori, and quantum SU(2) group, showing that the third one has a nonvanishing torsion if nontrivially coupled.
dc.affiliation
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki Teoretycznej
dc.affiliation
Szkoła Doktorska Nauk Ścisłych i Przyrodniczych
dc.contributor.author
Dąbrowski, Ludwik
dc.contributor.author
Sitarz, Andrzej - 100147
dc.contributor.author
Zalecki, Paweł - 244499
dc.date.accessioned
2025-02-21T13:32:28Z
dc.date.available
2025-02-21T13:32:28Z
dc.date.createdaten
2025-02-20T22:19:38Z
dc.date.issued
2024
dc.date.openaccess
0
dc.description.abstract
We introduce a trilinear functional of differential one-forms for a finitely summable regular spectral triple with a noncommutative residue. We demonstrate that for a canonical spectral triple over a closed spin manifold it recovers the torsion of the linear connection. We examine several spectral triples, including Hodge-de Rham, Einstein-Yang-Mills, almost-commutative two-sheeted space, conformally rescaled noncommutative tori, and quantum SU(2) group, showing that the third one has a nonvanishing torsion if nontrivially coupled.
dc.description.accesstime
w momencie opublikowania
dc.description.number
5
dc.description.version
ostateczna wersja wydawcy
dc.description.volume
405
dc.identifier.articleid
130
dc.identifier.doi
10.1007/s00220-024-04950-7
dc.identifier.eissn
1432-0916
dc.identifier.issn
0010-3616
dc.identifier.uri
https://ruj.uj.edu.pl/handle/item/549154
dc.language
eng
dc.language.container
eng
dc.rights
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
inne
dc.subtype
Article
dc.title
Spectral torsion
dc.title.journal
Communications in Mathematical Physics
dc.type
JournalArticle
dspace.entity.typeen
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
14
Views per month
Views per city
Krakow
5
Downloads
dabrowski_sitarz_zalecki_spectral_torsion_2024.pdf
3