Simple view
Full metadata view
Authors
Statistics
Spectral torsion
Journal
Communications in Mathematical Physics
140
Author
Dąbrowski Ludwik
Sitarz Andrzej
Zalecki Paweł
Volume
405
Number
5
Article ID
130
ISSN
0010-3616
eISSN
1432-0916
Language
English
Journal language
English
Abstract in English
We introduce a trilinear functional of differential one-forms for a finitely summable regular spectral triple with a noncommutative residue. We demonstrate that for a canonical spectral triple over a closed spin manifold it recovers the torsion of the linear connection. We examine several spectral triples, including Hodge-de Rham, Einstein-Yang-Mills, almost-commutative two-sheeted space, conformally rescaled noncommutative tori, and quantum SU(2) group, showing that the third one has a nonvanishing torsion if nontrivially coupled.
Affiliation
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki TeoretycznejSzkoła Doktorska Nauk Ścisłych i Przyrodniczych
Scopus© citations
3
dc.abstract.en | We introduce a trilinear functional of differential one-forms for a finitely summable regular spectral triple with a noncommutative residue. We demonstrate that for a canonical spectral triple over a closed spin manifold it recovers the torsion of the linear connection. We examine several spectral triples, including Hodge-de Rham, Einstein-Yang-Mills, almost-commutative two-sheeted space, conformally rescaled noncommutative tori, and quantum SU(2) group, showing that the third one has a nonvanishing torsion if nontrivially coupled. | |
dc.affiliation | Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki Teoretycznej | |
dc.affiliation | Szkoła Doktorska Nauk Ścisłych i Przyrodniczych | |
dc.contributor.author | Dąbrowski, Ludwik | |
dc.contributor.author | Sitarz, Andrzej - 100147 | |
dc.contributor.author | Zalecki, Paweł - 244499 | |
dc.date.accessioned | 2025-02-21T13:32:28Z | |
dc.date.available | 2025-02-21T13:32:28Z | |
dc.date.createdat | 2025-02-20T22:19:38Z | en |
dc.date.issued | 2024 | |
dc.date.openaccess | 0 | |
dc.description.abstract | We introduce a trilinear functional of differential one-forms for a finitely summable regular spectral triple with a noncommutative residue. We demonstrate that for a canonical spectral triple over a closed spin manifold it recovers the torsion of the linear connection. We examine several spectral triples, including Hodge-de Rham, Einstein-Yang-Mills, almost-commutative two-sheeted space, conformally rescaled noncommutative tori, and quantum SU(2) group, showing that the third one has a nonvanishing torsion if nontrivially coupled. | |
dc.description.accesstime | w momencie opublikowania | |
dc.description.number | 5 | |
dc.description.version | ostateczna wersja wydawcy | |
dc.description.volume | 405 | |
dc.identifier.articleid | 130 | |
dc.identifier.doi | 10.1007/s00220-024-04950-7 | |
dc.identifier.eissn | 1432-0916 | |
dc.identifier.issn | 0010-3616 | |
dc.identifier.uri | https://ruj.uj.edu.pl/handle/item/549154 | |
dc.language | eng | |
dc.language.container | eng | |
dc.rights | Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa | |
dc.rights.licence | CC-BY | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/legalcode.pl | |
dc.share.type | inne | |
dc.subtype | Article | |
dc.title | Spectral torsion | |
dc.title.journal | Communications in Mathematical Physics | |
dc.type | JournalArticle | |
dspace.entity.type | Publication | en |
dc.abstract.en
We introduce a trilinear functional of differential one-forms for a finitely summable regular spectral triple with a noncommutative residue. We demonstrate that for a canonical spectral triple over a closed spin manifold it recovers the torsion of the linear connection. We examine several spectral triples, including Hodge-de Rham, Einstein-Yang-Mills, almost-commutative two-sheeted space, conformally rescaled noncommutative tori, and quantum SU(2) group, showing that the third one has a nonvanishing torsion if nontrivially coupled. dc.affiliation
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki Teoretycznej dc.affiliation
Szkoła Doktorska Nauk Ścisłych i Przyrodniczych dc.contributor.author
Dąbrowski, Ludwik dc.contributor.author
Sitarz, Andrzej - 100147 dc.contributor.author
Zalecki, Paweł - 244499 dc.date.accessioned
2025-02-21T13:32:28Z dc.date.available
2025-02-21T13:32:28Z dc.date.createdaten
2025-02-20T22:19:38Z dc.date.issued
2024 dc.date.openaccess
0 dc.description.abstract
We introduce a trilinear functional of differential one-forms for a finitely summable regular spectral triple with a noncommutative residue. We demonstrate that for a canonical spectral triple over a closed spin manifold it recovers the torsion of the linear connection. We examine several spectral triples, including Hodge-de Rham, Einstein-Yang-Mills, almost-commutative two-sheeted space, conformally rescaled noncommutative tori, and quantum SU(2) group, showing that the third one has a nonvanishing torsion if nontrivially coupled. dc.description.accesstime
w momencie opublikowania dc.description.number
5 dc.description.version
ostateczna wersja wydawcy dc.description.volume
405 dc.identifier.articleid
130 dc.identifier.doi
10.1007/s00220-024-04950-7 dc.identifier.eissn
1432-0916 dc.identifier.issn
0010-3616 dc.identifier.uri
https://ruj.uj.edu.pl/handle/item/549154 dc.language
eng dc.language.container
eng dc.rights
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa dc.rights.licence
CC-BY dc.rights.uri
http://creativecommons.org/licenses/by/4.0/legalcode.pl dc.share.type
inne dc.subtype
Article dc.title
Spectral torsion dc.title.journal
Communications in Mathematical Physics dc.type
JournalArticle dspace.entity.typeen
Publication Affiliations
No affiliation
Dąbrowski, Ludwik
Wydział Fizyki, Astronomii i Informatyki Stosowanej
Sitarz, Andrzej
Szkoła Doktorska Nauk Ścisłych i Przyrodniczych
Zalecki, Paweł
* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.
Views
14
Views per month
Views per city
Krakow
5
Downloads
dabrowski_sitarz_zalecki_spectral_torsion_2024.pdf
3