Quiver diagonalization and open BPS states

2023
journal article
article
2
dc.abstract.enWe show that motivic Donaldson–Thomas invariants of a symmetric quiver Q, captured by the generating function P$_{Q}$, can be encoded in another quiver Q$^{\infty}$ of (almost always) infinite size, whose only arrows are loops, and whose generating function P$_{Q^{\infty}}$ is equal to P$_{Q}$ upon appropriate identification of generating parameters. Consequences of this statement include a generalization of the proof of integrality of Donaldson–Thomas and Labastida–Mariño–Ooguri–Vafa invariants that count open BPS states, as well as expressing motivic Donaldson–Thomas invariants of an arbitrary symmetric quiver in terms of invariants of m-loop quivers. In particular, this means that the already known combinatorial interpretation of invariants of m-loop quivers extends to arbitrary symmetric quivers.
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki Teoretycznej
dc.contributor.authorJankowski, Jakub
dc.contributor.authorKucharski, Piotr
dc.contributor.authorLarraguivel Carrillo, Helder - 462795
dc.contributor.authorNoshchenko, Dmitry
dc.contributor.authorSułkowski, Piotr
dc.date.accessioned2024-11-22T14:00:42Z
dc.date.available2024-11-22T14:00:42Z
dc.date.createdat2024-11-12T13:26:54Zen
dc.date.issued2023
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number2
dc.description.physical1551-1584
dc.description.versionostateczna wersja wydawcy
dc.description.volume402
dc.identifier.doi10.1007/s00220-023-04753-2
dc.identifier.eissn1432-0916
dc.identifier.issn0010-3616
dc.identifier.urihttps://ruj.uj.edu.pl/handle/item/473641
dc.languageeng
dc.language.containereng
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.typeinne
dc.subtypeArticle
dc.titleQuiver diagonalization and open BPS states
dc.title.journalCommunications in Mathematical Physics
dc.typeJournalArticle
dspace.entity.typePublicationen
dc.abstract.en
We show that motivic Donaldson–Thomas invariants of a symmetric quiver Q, captured by the generating function P$_{Q}$, can be encoded in another quiver Q$^{\infty}$ of (almost always) infinite size, whose only arrows are loops, and whose generating function P$_{Q^{\infty}}$ is equal to P$_{Q}$ upon appropriate identification of generating parameters. Consequences of this statement include a generalization of the proof of integrality of Donaldson–Thomas and Labastida–Mariño–Ooguri–Vafa invariants that count open BPS states, as well as expressing motivic Donaldson–Thomas invariants of an arbitrary symmetric quiver in terms of invariants of m-loop quivers. In particular, this means that the already known combinatorial interpretation of invariants of m-loop quivers extends to arbitrary symmetric quivers.
dc.affiliation
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki Teoretycznej
dc.contributor.author
Jankowski, Jakub
dc.contributor.author
Kucharski, Piotr
dc.contributor.author
Larraguivel Carrillo, Helder - 462795
dc.contributor.author
Noshchenko, Dmitry
dc.contributor.author
Sułkowski, Piotr
dc.date.accessioned
2024-11-22T14:00:42Z
dc.date.available
2024-11-22T14:00:42Z
dc.date.createdaten
2024-11-12T13:26:54Z
dc.date.issued
2023
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.number
2
dc.description.physical
1551-1584
dc.description.version
ostateczna wersja wydawcy
dc.description.volume
402
dc.identifier.doi
10.1007/s00220-023-04753-2
dc.identifier.eissn
1432-0916
dc.identifier.issn
0010-3616
dc.identifier.uri
https://ruj.uj.edu.pl/handle/item/473641
dc.language
eng
dc.language.container
eng
dc.rights
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
inne
dc.subtype
Article
dc.title
Quiver diagonalization and open BPS states
dc.title.journal
Communications in Mathematical Physics
dc.type
JournalArticle
dspace.entity.typeen
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.