Simple view
Full metadata view
Authors
Statistics
O-minimal version of Whitney's extension theorem
Journal
Studia Mathematica
25
Author
Kurdyka Krzysztof
Pawłucki Wiesław
Volume
224
Number
1
Pages
81-96
ISSN
0039-3223
eISSN
1730-6337
Language
English
Journal language
English
Abstract in English
This is a generalized and improved version of our earlier article [Studia Math. 124 (1997)] on the Whitney extension theorem for subanalytic Cp-Whitney fields (with p finite). In this new version we consider Whitney fields definable in an arbitrary o-minimal structure on any real closed field R and obtain an extension which is a Cp-function definable in the same o-minimal structure. The Whitney fields that we consider are defined on any locally closed definable subset of Rn. In such a way, a local version of the theorem is included.
Affiliation
Wydział Matematyki i Informatyki : Instytut Matematyki
Scopus© citations
12
| cris.lastimport.wos | 2024-04-09T22:40:37Z | |
| dc.abstract.en | This is a generalized and improved version of our earlier article [Studia Math. 124 (1997)] on the Whitney extension theorem for subanalytic Cp-Whitney fields (with p finite). In this new version we consider Whitney fields definable in an arbitrary o-minimal structure on any real closed field R and obtain an extension which is a Cp-function definable in the same o-minimal structure. The Whitney fields that we consider are defined on any locally closed definable subset of Rn. In such a way, a local version of the theorem is included. | pl |
| dc.affiliation | Wydział Matematyki i Informatyki : Instytut Matematyki | pl |
| dc.contributor.author | Kurdyka, Krzysztof | pl |
| dc.contributor.author | Pawłucki, Wiesław - 131322 | pl |
| dc.date.accessioned | 2015-03-17T11:18:00Z | |
| dc.date.available | 2015-03-17T11:18:00Z | |
| dc.date.issued | 2014 | pl |
| dc.description.number | 1 | pl |
| dc.description.physical | 81-96 | pl |
| dc.description.volume | 224 | pl |
| dc.identifier.doi | 10.4064/sm224-1-4 | pl |
| dc.identifier.eissn | 1730-6337 | pl |
| dc.identifier.issn | 0039-3223 | pl |
| dc.identifier.uri | http://ruj.uj.edu.pl/xmlui/handle/item/3878 | |
| dc.language | eng | pl |
| dc.language.container | eng | pl |
| dc.rights.licence | Bez licencji otwartego dostępu | |
| dc.subtype | Article | pl |
| dc.title | O-minimal version of Whitney's extension theorem | pl |
| dc.title.journal | Studia Mathematica | pl |
| dc.type | JournalArticle | pl |
| dspace.entity.type | Publication |
cris.lastimport.wos
2024-04-09T22:40:37Z dc.abstract.enpl
This is a generalized and improved version of our earlier article [Studia Math. 124 (1997)] on the Whitney extension theorem for subanalytic Cp-Whitney fields (with p finite). In this new version we consider Whitney fields definable in an arbitrary o-minimal structure on any real closed field R and obtain an extension which is a Cp-function definable in the same o-minimal structure. The Whitney fields that we consider are defined on any locally closed definable subset of Rn. In such a way, a local version of the theorem is included. dc.affiliationpl
Wydział Matematyki i Informatyki : Instytut Matematyki dc.contributor.authorpl
Kurdyka, Krzysztof dc.contributor.authorpl
Pawłucki, Wiesław - 131322 dc.date.accessioned
2015-03-17T11:18:00Z dc.date.available
2015-03-17T11:18:00Z dc.date.issuedpl
2014 dc.description.numberpl
1 dc.description.physicalpl
81-96 dc.description.volumepl
224 dc.identifier.doipl
10.4064/sm224-1-4 dc.identifier.eissnpl
1730-6337 dc.identifier.issnpl
0039-3223 dc.identifier.uri
http://ruj.uj.edu.pl/xmlui/handle/item/3878 dc.languagepl
eng dc.language.containerpl
eng dc.rights.licence
Bez licencji otwartego dostępu dc.subtypepl
Article dc.titlepl
O-minimal version of Whitney's extension theorem dc.title.journalpl
Studia Mathematica dc.typepl
JournalArticle dspace.entity.type
Publication Affiliations
Wydział Matematyki i Informatyki
Pawłucki, Wiesław
No affiliation
Kurdyka, Krzysztof
* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.
Views
15
Views per month
Views per city
Krakow
2
Ashburn
1
Curitiba
1
Padua
1