Segmentation of the melanoma lesion and its border

2022
journal article
article
7
cris.lastimport.wos2024-04-10T00:30:58Z
dc.abstract.enSegmentation of the border of the human pigmented lesions has a direct impact on the diagnosis of malignant melanoma. In this work, we examine performance of (i) morphological segmentation of a pigmented lesion by region growing with the adaptive threshold and density-based DBSCAN clustering algorithm, and (ii) morphological segmentation of the pigmented lesion border by region growing of the lesion and the background skin. Research tasks (i) and (ii) are evaluated by a human expert and tested on two data sets, A and B, of different origins, resolution, and image quality. The preprocessing step consists of removing the black frame around the lesion and reducing noise and artifacts. The halo is removed by cutting out the dark circular region and filling it with an average skin color. Noise is reduced by a family of Gaussian filters 3×3−7×7 to improve the contrast and smooth out possible distortions. Some other filters are also tested. Artifacts like dark thick hair or ruler/ink markers are removed from the images by using the DullRazor closing images for all RGB colors for a hair brightness threshold below a value of 25 or, alternatively, by the BTH transform. For the segmentation, JFIF luminance representation is used. In the analysis (i), out of each dermoscopy image, a lesion segmentation mask is produced. For the region growing we get a sensitivity of 0.92/0.85, a precision of 0.98/0.91, and a border error of 0.08/0.15 for data sets A/B, respectively. For the density-based DBSCAN algorithm, we get a sensitivity of 0.91/0.89, a precision of 0.95/0.93, and a border error of 0.09/0.12 for data sets A/B, respectively. In the analysis (ii), out of each dermoscopy image, a series of lesion, background, and border segmentation images are derived. We get a sensitivity of about 0.89, a specificity of 0.94 and an accuracy of 0.91 for data set A, and a sensitivity of about 0.85, specificity of 0.91 and an accuracy of 0.89 for data set B. Our analyses show that the improved methods of region growing and density-based clustering performed after proper preprocessing may be good tools for the computer-aided melanoma diagnosis.pl
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Informatyki Stosowanejpl
dc.contributor.authorSurówka, Grzegorz - 100453 pl
dc.contributor.authorOgorzałek, Maciej - 102456 pl
dc.date.accessioned2023-01-12T10:22:53Z
dc.date.available2023-01-12T10:22:53Z
dc.date.issued2022pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number4pl
dc.description.physical683-699pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume32pl
dc.identifier.doi10.34768/amcs-2022-0047pl
dc.identifier.eissn2083-8492pl
dc.identifier.issn1641-876Xpl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/305893
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 3.0*
dc.rights.licenceCC-BY-NC-ND
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/legalcode*
dc.share.typeotwarte czasopismo
dc.source.integratorfalse
dc.subject.encomputer-aided diagnosispl
dc.subject.enDBSCANpl
dc.subject.enmelanomapl
dc.subject.enregion growingpl
dc.subject.ensegmentationpl
dc.subtypeArticlepl
dc.titleSegmentation of the melanoma lesion and its borderpl
dc.title.journalInternational Journal of Applied Mathematics and Computer Sciencepl
dc.typeJournalArticlepl
dspace.entity.typePublication
cris.lastimport.wos
2024-04-10T00:30:58Z
dc.abstract.enpl
Segmentation of the border of the human pigmented lesions has a direct impact on the diagnosis of malignant melanoma. In this work, we examine performance of (i) morphological segmentation of a pigmented lesion by region growing with the adaptive threshold and density-based DBSCAN clustering algorithm, and (ii) morphological segmentation of the pigmented lesion border by region growing of the lesion and the background skin. Research tasks (i) and (ii) are evaluated by a human expert and tested on two data sets, A and B, of different origins, resolution, and image quality. The preprocessing step consists of removing the black frame around the lesion and reducing noise and artifacts. The halo is removed by cutting out the dark circular region and filling it with an average skin color. Noise is reduced by a family of Gaussian filters 3×3−7×7 to improve the contrast and smooth out possible distortions. Some other filters are also tested. Artifacts like dark thick hair or ruler/ink markers are removed from the images by using the DullRazor closing images for all RGB colors for a hair brightness threshold below a value of 25 or, alternatively, by the BTH transform. For the segmentation, JFIF luminance representation is used. In the analysis (i), out of each dermoscopy image, a lesion segmentation mask is produced. For the region growing we get a sensitivity of 0.92/0.85, a precision of 0.98/0.91, and a border error of 0.08/0.15 for data sets A/B, respectively. For the density-based DBSCAN algorithm, we get a sensitivity of 0.91/0.89, a precision of 0.95/0.93, and a border error of 0.09/0.12 for data sets A/B, respectively. In the analysis (ii), out of each dermoscopy image, a series of lesion, background, and border segmentation images are derived. We get a sensitivity of about 0.89, a specificity of 0.94 and an accuracy of 0.91 for data set A, and a sensitivity of about 0.85, specificity of 0.91 and an accuracy of 0.89 for data set B. Our analyses show that the improved methods of region growing and density-based clustering performed after proper preprocessing may be good tools for the computer-aided melanoma diagnosis.
dc.affiliationpl
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Informatyki Stosowanej
dc.contributor.authorpl
Surówka, Grzegorz - 100453
dc.contributor.authorpl
Ogorzałek, Maciej - 102456
dc.date.accessioned
2023-01-12T10:22:53Z
dc.date.available
2023-01-12T10:22:53Z
dc.date.issuedpl
2022
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.numberpl
4
dc.description.physicalpl
683-699
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
32
dc.identifier.doipl
10.34768/amcs-2022-0047
dc.identifier.eissnpl
2083-8492
dc.identifier.issnpl
1641-876X
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/305893
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 3.0
dc.rights.licence
CC-BY-NC-ND
dc.rights.uri*
http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode
dc.share.type
otwarte czasopismo
dc.source.integrator
false
dc.subject.enpl
computer-aided diagnosis
dc.subject.enpl
DBSCAN
dc.subject.enpl
melanoma
dc.subject.enpl
region growing
dc.subject.enpl
segmentation
dc.subtypepl
Article
dc.titlepl
Segmentation of the melanoma lesion and its border
dc.title.journalpl
International Journal of Applied Mathematics and Computer Science
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
3
Views per month
Views per city
Krakow
1
Downloads
surowka_ogorzalek_segmentation_of_the_melanoma_lesion_2022.pdf
56