How to solve third degree equations without moving to complex numbers

2020
journal article
review article
1
dc.abstract.enDuring the Renaissance, the theory of algebraic equations developed in Europe. It is about finding a solution to the equation of the form $a_{n}x^{n}+...+a_{1}x+a_{0}=0,$ represented by coefficients subject to algebraic operations and roots of any degree. In the 16th century, algorithms for the third and fourth-degree equations appeared. Only in the nineteenth century, a similar algorithm for the higher degree was proved impossible. In (Cardano, 1545) described an algorithm for solving third-degree equations. In the current version of this algorithm, one has to take roots of complex numbers that even Cardano did not know. This work proposes an algorithm for solving third-degree algebraic equations using only algebraic operations on real numbers and elementary functions taught at High School.pl
dc.affiliationWydział Matematyki i Informatyki : Instytut Matematykipl
dc.contributor.authorDawidowicz, Antoni - 127694 pl
dc.date.accessioned2021-10-04T16:56:36Z
dc.date.available2021-10-04T16:56:36Z
dc.date.issued2020pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.physical123-131pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume12pl
dc.identifier.doi10.24917/20809751.12.6pl
dc.identifier.eissn2450-341Xpl
dc.identifier.issn2080-9751pl
dc.identifier.projectROD UJ / Opl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/279479
dc.languageengpl
dc.language.containerengpl
dc.rightsDodaję tylko opis bibliograficzny*
dc.rights.licenceInna otwarta licencja
dc.rights.uri*
dc.share.typeotwarte czasopismo
dc.source.integratorfalse
dc.subject.enoots of third-degree equationspl
dc.subtypeReviewArticlepl
dc.titleHow to solve third degree equations without moving to complex numberspl
dc.title.journalAnnales Universitates Paedagogicae Cracoviensis. Studia ad Didacticam Mathematicae Pertinentiapl
dc.typeJournalArticlepl
dspace.entity.typePublication
dc.abstract.enpl
During the Renaissance, the theory of algebraic equations developed in Europe. It is about finding a solution to the equation of the form $a_{n}x^{n}+...+a_{1}x+a_{0}=0,$ represented by coefficients subject to algebraic operations and roots of any degree. In the 16th century, algorithms for the third and fourth-degree equations appeared. Only in the nineteenth century, a similar algorithm for the higher degree was proved impossible. In (Cardano, 1545) described an algorithm for solving third-degree equations. In the current version of this algorithm, one has to take roots of complex numbers that even Cardano did not know. This work proposes an algorithm for solving third-degree algebraic equations using only algebraic operations on real numbers and elementary functions taught at High School.
dc.affiliationpl
Wydział Matematyki i Informatyki : Instytut Matematyki
dc.contributor.authorpl
Dawidowicz, Antoni - 127694
dc.date.accessioned
2021-10-04T16:56:36Z
dc.date.available
2021-10-04T16:56:36Z
dc.date.issuedpl
2020
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.physicalpl
123-131
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
12
dc.identifier.doipl
10.24917/20809751.12.6
dc.identifier.eissnpl
2450-341X
dc.identifier.issnpl
2080-9751
dc.identifier.projectpl
ROD UJ / O
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/279479
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Dodaję tylko opis bibliograficzny
dc.rights.licence
Inna otwarta licencja
dc.rights.uri*
dc.share.type
otwarte czasopismo
dc.source.integrator
false
dc.subject.enpl
oots of third-degree equations
dc.subtypepl
ReviewArticle
dc.titlepl
How to solve third degree equations without moving to complex numbers
dc.title.journalpl
Annales Universitates Paedagogicae Cracoviensis. Studia ad Didacticam Mathematicae Pertinentia
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
14
Views per month
Views per city
Ashburn
6
Dublin
3
Wroclaw
2
Krakow
1
Szczecin
1

No access

No Thumbnail Available