Simple view
Full metadata view
Authors
Statistics
Using ConvNet for classification task in parallel coordinates visualization of topologically arranged attribute values
classification
parallel coordinates
convnet
pattern recognition
Dostęp po zalogowaniu. Konferencja w trybie zdalnym.
In this work, we assess the classification capability of visualized multidimensional data used in the decision- making process. We want to investigate if classification carried out over a graphical representation of the tabular data allows for statistically greater efficiency than the dummy classifier method. To achieve this, we have used a convolutional neural network (ConvNet) as the base classifier. As an input into this model, we used data presented in the form of 2D curves resulting from the Parallel Coordinates Plot (PCP) visualization. Our initial results show that the topological arrangement of attributes, i.e., the shape formed by the PCP curves of individual data items, can serve as an effective classifier. Tests performed on three different real-world datasets from the UCI Machine Learning Repository confirmed that classification efficiency is significantly higher than in the case of dummy classification. The new method provides an interesting approach to the classificatio
dc.abstract.en | In this work, we assess the classification capability of visualized multidimensional data used in the decision- making process. We want to investigate if classification carried out over a graphical representation of the tabular data allows for statistically greater efficiency than the dummy classifier method. To achieve this, we have used a convolutional neural network (ConvNet) as the base classifier. As an input into this model, we used data presented in the form of 2D curves resulting from the Parallel Coordinates Plot (PCP) visualization. Our initial results show that the topological arrangement of attributes, i.e., the shape formed by the PCP curves of individual data items, can serve as an effective classifier. Tests performed on three different real-world datasets from the UCI Machine Learning Repository confirmed that classification efficiency is significantly higher than in the case of dummy classification. The new method provides an interesting approach to the classificatio | pl |
dc.affiliation | Wydział Fizyki, Astronomii i Informatyki Stosowanej : Zespół Zakładów Informatyki Stosowanej | pl |
dc.conference | 14th International Conference on Agents and Artificial Intelligence (ICAART 2022) | |
dc.conference.city | online | |
dc.conference.country | online | |
dc.conference.datefinish | 2022-02-05 | |
dc.conference.datestart | 2022-02-03 | |
dc.conference.shortcut | ICAART | |
dc.contributor.author | Artiemjew, Piotr | pl |
dc.contributor.author | Tadeja, Sławomir - 119915 | pl |
dc.contributor.editor | Rocha, Ana Paula | pl |
dc.contributor.editor | Steels, Luc | pl |
dc.contributor.editor | van den Herik, Jaap | pl |
dc.date.accessioned | 2022-03-15T10:15:01Z | |
dc.date.available | 2022-03-15T10:15:01Z | |
dc.date.issued | 2022 | pl |
dc.date.openaccess | 0 | |
dc.description.accesstime | w momencie opublikowania | |
dc.description.additional | Dostęp po zalogowaniu. Konferencja w trybie zdalnym. | pl |
dc.description.conftype | international | pl |
dc.description.physical | 167-171 | pl |
dc.description.publication | 0,3 | pl |
dc.description.series | ICAART | |
dc.description.version | ostateczna wersja wydawcy | |
dc.description.volume | 3 | pl |
dc.identifier.doi | 10.5220/0010793700003116 | pl |
dc.identifier.isbn | 978-989-758-547-0 | pl |
dc.identifier.serieseissn | 2184-433X | |
dc.identifier.seriesissn | 2184-3589 | |
dc.identifier.uri | https://ruj.uj.edu.pl/xmlui/handle/item/289173 | |
dc.language | eng | pl |
dc.language.container | eng | pl |
dc.pubinfo | [s.l.] : SciTePress - Science and Technology Publications | pl |
dc.rights | Dodaję tylko opis bibliograficzny | * |
dc.rights.licence | CC-BY-NC-ND | |
dc.rights.uri | * | |
dc.share.type | otwarte repozytorium | |
dc.subject.en | classification | pl |
dc.subject.en | parallel coordinates | pl |
dc.subject.en | convnet | pl |
dc.subject.en | pattern recognition | pl |
dc.subtype | ConferenceProceedings | pl |
dc.title | Using ConvNet for classification task in parallel coordinates visualization of topologically arranged attribute values | pl |
dc.title.container | ICAART 2022 : 14th International Conference on Agents and Artificial Intelligence : proceedings : 3-5 February, 2022 | pl |
dc.type | BookSection | pl |
dspace.entity.type | Publication |