Using ConvNet for classification task in parallel coordinates visualization of topologically arranged attribute values

2022
book section
conference proceedings
1
dc.abstract.enIn this work, we assess the classification capability of visualized multidimensional data used in the decision- making process. We want to investigate if classification carried out over a graphical representation of the tabular data allows for statistically greater efficiency than the dummy classifier method. To achieve this, we have used a convolutional neural network (ConvNet) as the base classifier. As an input into this model, we used data presented in the form of 2D curves resulting from the Parallel Coordinates Plot (PCP) visualization. Our initial results show that the topological arrangement of attributes, i.e., the shape formed by the PCP curves of individual data items, can serve as an effective classifier. Tests performed on three different real-world datasets from the UCI Machine Learning Repository confirmed that classification efficiency is significantly higher than in the case of dummy classification. The new method provides an interesting approach to the classificatiopl
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Zespół Zakładów Informatyki Stosowanejpl
dc.conference14th International Conference on Agents and Artificial Intelligence (ICAART 2022)
dc.conference.cityonline
dc.conference.countryonline
dc.conference.datefinish2022-02-05
dc.conference.datestart2022-02-03
dc.conference.shortcutICAART
dc.contributor.authorArtiemjew, Piotrpl
dc.contributor.authorTadeja, Sławomir - 119915 pl
dc.contributor.editorRocha, Ana Paulapl
dc.contributor.editorSteels, Lucpl
dc.contributor.editorvan den Herik, Jaappl
dc.date.accessioned2022-03-15T10:15:01Z
dc.date.available2022-03-15T10:15:01Z
dc.date.issued2022pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.additionalDostęp po zalogowaniu. Konferencja w trybie zdalnym.pl
dc.description.conftypeinternationalpl
dc.description.physical167-171pl
dc.description.publication0,3pl
dc.description.seriesICAART
dc.description.versionostateczna wersja wydawcy
dc.description.volume3pl
dc.identifier.doi10.5220/0010793700003116pl
dc.identifier.isbn978-989-758-547-0pl
dc.identifier.serieseissn2184-433X
dc.identifier.seriesissn2184-3589
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/289173
dc.languageengpl
dc.language.containerengpl
dc.pubinfo[s.l.] : SciTePress - Science and Technology Publicationspl
dc.rightsDodaję tylko opis bibliograficzny*
dc.rights.licenceCC-BY-NC-ND
dc.rights.uri*
dc.share.typeotwarte repozytorium
dc.subject.enclassificationpl
dc.subject.enparallel coordinatespl
dc.subject.enconvnetpl
dc.subject.enpattern recognitionpl
dc.subtypeConferenceProceedingspl
dc.titleUsing ConvNet for classification task in parallel coordinates visualization of topologically arranged attribute valuespl
dc.title.containerICAART 2022 : 14th International Conference on Agents and Artificial Intelligence : proceedings : 3-5 February, 2022pl
dc.typeBookSectionpl
dspace.entity.typePublication
dc.abstract.enpl
In this work, we assess the classification capability of visualized multidimensional data used in the decision- making process. We want to investigate if classification carried out over a graphical representation of the tabular data allows for statistically greater efficiency than the dummy classifier method. To achieve this, we have used a convolutional neural network (ConvNet) as the base classifier. As an input into this model, we used data presented in the form of 2D curves resulting from the Parallel Coordinates Plot (PCP) visualization. Our initial results show that the topological arrangement of attributes, i.e., the shape formed by the PCP curves of individual data items, can serve as an effective classifier. Tests performed on three different real-world datasets from the UCI Machine Learning Repository confirmed that classification efficiency is significantly higher than in the case of dummy classification. The new method provides an interesting approach to the classificatio
dc.affiliationpl
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Zespół Zakładów Informatyki Stosowanej
dc.conference
14th International Conference on Agents and Artificial Intelligence (ICAART 2022)
dc.conference.city
online
dc.conference.country
online
dc.conference.datefinish
2022-02-05
dc.conference.datestart
2022-02-03
dc.conference.shortcut
ICAART
dc.contributor.authorpl
Artiemjew, Piotr
dc.contributor.authorpl
Tadeja, Sławomir - 119915
dc.contributor.editorpl
Rocha, Ana Paula
dc.contributor.editorpl
Steels, Luc
dc.contributor.editorpl
van den Herik, Jaap
dc.date.accessioned
2022-03-15T10:15:01Z
dc.date.available
2022-03-15T10:15:01Z
dc.date.issuedpl
2022
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.additionalpl
Dostęp po zalogowaniu. Konferencja w trybie zdalnym.
dc.description.conftypepl
international
dc.description.physicalpl
167-171
dc.description.publicationpl
0,3
dc.description.series
ICAART
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
3
dc.identifier.doipl
10.5220/0010793700003116
dc.identifier.isbnpl
978-989-758-547-0
dc.identifier.serieseissn
2184-433X
dc.identifier.seriesissn
2184-3589
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/289173
dc.languagepl
eng
dc.language.containerpl
eng
dc.pubinfopl
[s.l.] : SciTePress - Science and Technology Publications
dc.rights*
Dodaję tylko opis bibliograficzny
dc.rights.licence
CC-BY-NC-ND
dc.rights.uri*
dc.share.type
otwarte repozytorium
dc.subject.enpl
classification
dc.subject.enpl
parallel coordinates
dc.subject.enpl
convnet
dc.subject.enpl
pattern recognition
dc.subtypepl
ConferenceProceedings
dc.titlepl
Using ConvNet for classification task in parallel coordinates visualization of topologically arranged attribute values
dc.title.containerpl
ICAART 2022 : 14th International Conference on Agents and Artificial Intelligence : proceedings : 3-5 February, 2022
dc.typepl
BookSection
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
37
Views per month
Views per city
Stamford
3
Ashburn
2
Warsaw
2
Wroclaw
2
Brisbane
1
Catamarca
1
Dublin
1
Krakow
1
Lappeenranta
1
Santa Clara
1

No access

No Thumbnail Available