Bounded-degree planar graphs do not have bounded-degree product structure

2024
journal article
article
dc.abstract.enProduct structure theorems are a collection of recent results that have been used to resolve a number of longstanding open problems on planar graphs and related graph classes. One particularly useful version states that every planar graph $G$ is contained in the strong product of a $3$-tree $H$, a path $P$, and a $3$-cycle $K_3$; written as $G\subseteq H\boxtimes P\boxtimes K_3$. A number of researchers have asked if this theorem can be strengthened so that the maximum degree in $H$ can be bounded by a function of the maximum degree in $G$. We show that no such strengthening is possible. Specifically, we describe an infinite family $\mathcal{G}$ of planar graphs of maximum degree $5$ such that, if an $n$-vertex member $G$ of $\mathcal{G}$ is isomorphic to a subgraph of $H\boxtimes P\boxtimes K_c$ where $P$ is a path and $H$ is a graph of maximum degree $\Delta$ and treewidth $t$, then $t\Delta c \ge 2^{\Omega(\sqrt{\log\log n})}$.
dc.affiliationWydział Matematyki i Informatyki : Instytut Informatyki Analitycznej
dc.contributor.authorDujmović, Vida
dc.contributor.authorJoret, Gwenaël
dc.contributor.authorMicek, Piotr - 142050
dc.contributor.authorMorin, Pat
dc.contributor.authorWood, David
dc.date.accession2025-01-20
dc.date.accessioned2025-01-20T10:48:50Z
dc.date.available2025-01-20T10:48:50Z
dc.date.createdat2025-01-20T08:55:11Zen
dc.date.issued2024
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number2
dc.description.versionostateczna wersja wydawcy
dc.description.volume31
dc.identifier.articleidP2.51
dc.identifier.doi10.37236/11712
dc.identifier.issn1077-8926
dc.identifier.urihttps://ruj.uj.edu.pl/handle/item/545870
dc.identifier.weblinkhttps://www.combinatorics.org/ojs/index.php/eljc/article/view/v31i2p51/pdf
dc.languageeng
dc.language.containereng
dc.rightsUdzielam licencji. Uznanie autorstwa - Bez utworów zależnych 4.0 Międzynarodowa
dc.rights.licenceCC-BY-ND
dc.rights.urihttps://creativecommons.org/licenses/by-nd/4.0/legalcode.pl
dc.share.typeotwarte czasopismo
dc.subtypeArticle
dc.titleBounded-degree planar graphs do not have bounded-degree product structure
dc.title.journalElectronic Journal of Combinatorics
dc.typeJournalArticle
dspace.entity.typePublicationen
dc.abstract.en
Product structure theorems are a collection of recent results that have been used to resolve a number of longstanding open problems on planar graphs and related graph classes. One particularly useful version states that every planar graph $G$ is contained in the strong product of a $3$-tree $H$, a path $P$, and a $3$-cycle $K_3$; written as $G\subseteq H\boxtimes P\boxtimes K_3$. A number of researchers have asked if this theorem can be strengthened so that the maximum degree in $H$ can be bounded by a function of the maximum degree in $G$. We show that no such strengthening is possible. Specifically, we describe an infinite family $\mathcal{G}$ of planar graphs of maximum degree $5$ such that, if an $n$-vertex member $G$ of $\mathcal{G}$ is isomorphic to a subgraph of $H\boxtimes P\boxtimes K_c$ where $P$ is a path and $H$ is a graph of maximum degree $\Delta$ and treewidth $t$, then $t\Delta c \ge 2^{\Omega(\sqrt{\log\log n})}$.
dc.affiliation
Wydział Matematyki i Informatyki : Instytut Informatyki Analitycznej
dc.contributor.author
Dujmović, Vida
dc.contributor.author
Joret, Gwenaël
dc.contributor.author
Micek, Piotr - 142050
dc.contributor.author
Morin, Pat
dc.contributor.author
Wood, David
dc.date.accession
2025-01-20
dc.date.accessioned
2025-01-20T10:48:50Z
dc.date.available
2025-01-20T10:48:50Z
dc.date.createdaten
2025-01-20T08:55:11Z
dc.date.issued
2024
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.number
2
dc.description.version
ostateczna wersja wydawcy
dc.description.volume
31
dc.identifier.articleid
P2.51
dc.identifier.doi
10.37236/11712
dc.identifier.issn
1077-8926
dc.identifier.uri
https://ruj.uj.edu.pl/handle/item/545870
dc.identifier.weblink
https://www.combinatorics.org/ojs/index.php/eljc/article/view/v31i2p51/pdf
dc.language
eng
dc.language.container
eng
dc.rights
Udzielam licencji. Uznanie autorstwa - Bez utworów zależnych 4.0 Międzynarodowa
dc.rights.licence
CC-BY-ND
dc.rights.uri
https://creativecommons.org/licenses/by-nd/4.0/legalcode.pl
dc.share.type
otwarte czasopismo
dc.subtype
Article
dc.title
Bounded-degree planar graphs do not have bounded-degree product structure
dc.title.journal
Electronic Journal of Combinatorics
dc.type
JournalArticle
dspace.entity.typeen
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
6
Views per month