Measuring meta-interpretation

2024
journal article
article
3
dc.abstract.enAmerican legal interpretation has taken an empirical turn. Courts and scholars use corpus linguistics, survey experiments, and machine learning to clarify meanings of legal texts. We introduce these developments in »issue-level interpretation,« concerning interpretive theories' application to legal language. Empirical methods also inform »meta-interpretive« debate: Which interpretive theory do interpreters use; which have they used; and which should they use? We demonstrate the relevance of machine learning to these meta-interpretive debates with insights provided by a word embedding that we trained on a corpus of over 1.3 million U.S. federal court decisions.
dc.affiliationWydział Filozoficzny : Interdyscyplinarne Centrum Etyki
dc.contributor.authorBystranowski, Piotr - 165068
dc.contributor.authorTobia, Kevin
dc.date.accessioned2024-08-29T07:46:53Z
dc.date.available2024-08-29T07:46:53Z
dc.date.issued2024
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number2
dc.description.physical281-305
dc.description.versionostateczna wersja autorska (postprint)
dc.description.volume180
dc.identifier.doi10.1628/jite-2024-0011
dc.identifier.issn0932-4569
dc.identifier.project805498
dc.identifier.urihttps://ruj.uj.edu.pl/handle/item/425460
dc.languageeng
dc.language.containereng
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.typeotwarte repozytorium
dc.subject.eninterpretation
dc.subject.enmeaning
dc.subject.ennatural language processing
dc.subject.enpurpose
dc.subject.entext
dc.subject.enword embeddings
dc.subtypeArticle
dc.titleMeasuring meta-interpretation
dc.title.journalJournal of Institutional and Theoretical Economics
dc.typeJournalArticle
dspace.entity.typePublicationen
dc.abstract.en
American legal interpretation has taken an empirical turn. Courts and scholars use corpus linguistics, survey experiments, and machine learning to clarify meanings of legal texts. We introduce these developments in »issue-level interpretation,« concerning interpretive theories' application to legal language. Empirical methods also inform »meta-interpretive« debate: Which interpretive theory do interpreters use; which have they used; and which should they use? We demonstrate the relevance of machine learning to these meta-interpretive debates with insights provided by a word embedding that we trained on a corpus of over 1.3 million U.S. federal court decisions.
dc.affiliation
Wydział Filozoficzny : Interdyscyplinarne Centrum Etyki
dc.contributor.author
Bystranowski, Piotr - 165068
dc.contributor.author
Tobia, Kevin
dc.date.accessioned
2024-08-29T07:46:53Z
dc.date.available
2024-08-29T07:46:53Z
dc.date.issued
2024
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.number
2
dc.description.physical
281-305
dc.description.version
ostateczna wersja autorska (postprint)
dc.description.volume
180
dc.identifier.doi
10.1628/jite-2024-0011
dc.identifier.issn
0932-4569
dc.identifier.project
805498
dc.identifier.uri
https://ruj.uj.edu.pl/handle/item/425460
dc.language
eng
dc.language.container
eng
dc.rights
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
otwarte repozytorium
dc.subject.en
interpretation
dc.subject.en
meaning
dc.subject.en
natural language processing
dc.subject.en
purpose
dc.subject.en
text
dc.subject.en
word embeddings
dc.subtype
Article
dc.title
Measuring meta-interpretation
dc.title.journal
Journal of Institutional and Theoretical Economics
dc.type
JournalArticle
dspace.entity.typeen
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
38
Views per month
Views per city
Krakow
5
Boulder
1
Krzeszowice
1
Warsaw
1
Washington
1
Downloads
bystranowski_tobia_measuring_meta-interpretation_2024.pdf
35
Bystranowski Tobia Feb 2 PB(1) (1).docx
3