On homology torsion growth

2025
journal article
article
1
dc.abstract.enWe prove new vanishing results on the growth of higher torsion homologies for suitable arithmetic lattices, Artin groups and mapping class groups. The growth is understood along Farber sequences, in particular, along residual chains. For principal congruence subgroups, we also obtain strong asymptotic bounds for the torsion growth. As a central tool, we introduce a quantitative homotopical method called effective rebuilding. This constructs small classifying spaces of finite index subgroups, at the same time controlling the complexity of the homotopy. The method easily applies to free abelian groups and then extends recursively to a wide class of residually finite groups.
dc.affiliationWydział Matematyki i Informatyki : Centrum Zaawansowanych Badań Matematycznych
dc.contributor.authorAbert, Miklos
dc.contributor.authorBergeron, Nicolas
dc.contributor.authorFrączyk, Mikołaj - 178273
dc.contributor.authorGaboriau, Damien
dc.date.accession2025-10-21
dc.date.accessioned2025-10-21T07:44:58Z
dc.date.available2025-10-21T07:44:58Z
dc.date.createdat2025-10-21T06:29:02Zen
dc.date.issued2025
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number6
dc.description.physical2293–2357
dc.description.versionostateczna wersja wydawcy
dc.description.volume27
dc.identifier.doi10.4171/JEMS/1411
dc.identifier.eissn1435-9863
dc.identifier.issn1435-9855
dc.identifier.projectERC Consolidator Grant 648017
dc.identifier.projectDRC AI
dc.identifier.urihttps://ruj.uj.edu.pl/handle/item/563323
dc.identifier.weblinkhttps://ems.press/journals/jems/articles/13892617
dc.languageeng
dc.language.containereng
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.typeotwarte czasopismo
dc.subject.enarithmetic groups
dc.subject.endiscrete subgroups of semisimple Lie groups
dc.subject.enhigher rank lattices
dc.subject.enArtin groups
dc.subject.enmapping class groups
dc.subject.enhomology torsion
dc.subtypeArticle
dc.titleOn homology torsion growth
dc.title.journalJournal of the European Mathematical Society
dc.typeJournalArticle
dspace.entity.typePublicationen
dc.abstract.en
We prove new vanishing results on the growth of higher torsion homologies for suitable arithmetic lattices, Artin groups and mapping class groups. The growth is understood along Farber sequences, in particular, along residual chains. For principal congruence subgroups, we also obtain strong asymptotic bounds for the torsion growth. As a central tool, we introduce a quantitative homotopical method called effective rebuilding. This constructs small classifying spaces of finite index subgroups, at the same time controlling the complexity of the homotopy. The method easily applies to free abelian groups and then extends recursively to a wide class of residually finite groups.
dc.affiliation
Wydział Matematyki i Informatyki : Centrum Zaawansowanych Badań Matematycznych
dc.contributor.author
Abert, Miklos
dc.contributor.author
Bergeron, Nicolas
dc.contributor.author
Frączyk, Mikołaj - 178273
dc.contributor.author
Gaboriau, Damien
dc.date.accession
2025-10-21
dc.date.accessioned
2025-10-21T07:44:58Z
dc.date.available
2025-10-21T07:44:58Z
dc.date.createdaten
2025-10-21T06:29:02Z
dc.date.issued
2025
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.number
6
dc.description.physical
2293–2357
dc.description.version
ostateczna wersja wydawcy
dc.description.volume
27
dc.identifier.doi
10.4171/JEMS/1411
dc.identifier.eissn
1435-9863
dc.identifier.issn
1435-9855
dc.identifier.project
ERC Consolidator Grant 648017
dc.identifier.project
DRC AI
dc.identifier.uri
https://ruj.uj.edu.pl/handle/item/563323
dc.identifier.weblink
https://ems.press/journals/jems/articles/13892617
dc.language
eng
dc.language.container
eng
dc.rights
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
otwarte czasopismo
dc.subject.en
arithmetic groups
dc.subject.en
discrete subgroups of semisimple Lie groups
dc.subject.en
higher rank lattices
dc.subject.en
Artin groups
dc.subject.en
mapping class groups
dc.subject.en
homology torsion
dc.subtype
Article
dc.title
On homology torsion growth
dc.title.journal
Journal of the European Mathematical Society
dc.type
JournalArticle
dspace.entity.typeen
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
7
Views per month
Views per city
Krakow
3
Downloads
fraczyk_et-al_on_homology_torsion_growth_2025.pdf
2