Simple view
Full metadata view
Authors
Statistics
The
geometric graphs
chi-boundedness
segment graphs
graph colouring
Given a positive integer
| dc.abstract.en | Given a positive integer $\textit{d}$, the class $\textit{d}$-DIR is defined as all those intersection graphs formed from a finite collection of line segments in $\mathbb{R}^{2}$ having at most d slopes. Since each slope induces an interval graph, it easily follows for every $\textit{G}$ in $\textit{d}$-DIR with clique number at most $\omega$ that the chromatic numer $\chi\left(\textit{G}\right)$ of $\textit{G}$ is at most $\textit{d}\omega$. We show for every even value of $\omega$ how to construct a graph in $\textit{d}$-DIR that meets this bound exactly. This partially confirms a conjecture of Bhattacharya, Dvořák and Noorizadeh. Furthermore, we show that the $\chi$-binding function of $\textit{d}$-DIR is $\omega\mapsto\mathit{d}\omega$ for $\omega$ even and $\omega\mapsto\textit{d}\left(\omega-1\right)+1$ for $\omega$ odd. This extends an earlier result by Kostochka and Nešetřil, which treated the special case $\textit{d}=2$. | |
| dc.affiliation | Wydział Matematyki i Informatyki : Instytut Informatyki Analitycznej | |
| dc.contributor.author | Duraj, Lech - 133967 | |
| dc.contributor.author | Kang, Ross J. | |
| dc.contributor.author | La, Xuân - 474785 | |
| dc.contributor.author | Narboni, Jonathan - 477530 | |
| dc.contributor.author | Pokrývka, Filip | |
| dc.contributor.author | Rambaud, Clément | |
| dc.contributor.author | Reinald, Amadeus | |
| dc.date.accession | 2025-12-19 | |
| dc.date.accessioned | 2025-12-19T06:40:09Z | |
| dc.date.available | 2025-12-19T06:40:09Z | |
| dc.date.createdat | 2025-12-17T08:09:28Z | en |
| dc.date.issued | 2025 | |
| dc.date.openaccess | 0 | |
| dc.description.accesstime | w momencie opublikowania | |
| dc.description.number | 3 | |
| dc.description.physical | 758-770 | |
| dc.description.version | ostateczna wersja wydawcy | |
| dc.description.volume | 74 | |
| dc.identifier.doi | 10.1007/s00454-025-00737-2 | |
| dc.identifier.eissn | 1432-0444 | |
| dc.identifier.issn | 0179-5376 | |
| dc.identifier.project | DRC AI | |
| dc.identifier.uri | https://ruj.uj.edu.pl/handle/item/567920 | |
| dc.identifier.weblink | https://link.springer.com/article/10.1007/s00454-025-00737-2 | |
| dc.language | eng | |
| dc.language.container | eng | |
| dc.rights | Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa | |
| dc.rights.licence | CC-BY | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/legalcode.pl | |
| dc.share.type | inne | |
| dc.subject.en | geometric graphs | |
| dc.subject.en | chi-boundedness | |
| dc.subject.en | segment graphs | |
| dc.subject.en | graph colouring | |
| dc.subtype | Article | |
| dc.title | The $\chi$-binding function of $\textit{d}$-Directional segment graphs | |
| dc.title.journal | Discrete and Computational Geometry | |
| dc.type | JournalArticle | |
| dspace.entity.type | Publication | en |