Machine learning and statistical approaches to measuring similarity of political parties

2023
online paper
article
dc.abstract.enMapping political party systems to metric policy spaces is one of the major methodological problems in political science. At present, in most political science project this task is performed by domain experts relying on purely qualitative assessments, with all the attendant problems of subjectivity and labor intensiveness. We consider how advances in natural language processing, including large transformer-based language models, can be applied to solve that issue. We apply a number of texts similarity measures to party political programs, analyze how they correlate with each other, and -- in the absence of a satisfactory benchmark -- evaluate them against other measures, including those based on expert surveys, voting records, electoral patterns, and candidate networks. Finally, we consider the prospects of relying on those methods to correct, supplement, and eventually replace expert judgments.pl
dc.affiliationWydział Studiów Międzynarodowych i Politycznych : Instytut Nauk Politycznych i Stosunków Międzynarodowychpl
dc.affiliationWydział Matematyki i Informatyki : Instytut Matematykipl
dc.affiliationWydział Filologiczny : Instytut Filologii Angielskiejpl
dc.affiliationPion Prorektora ds. rozwoju : Centrum Badań Ilościowych nad Politykąpl
dc.contributor.authorBoratyn, Daria - 201090 pl
dc.contributor.authorBrzyski, Damian - 115462 pl
dc.contributor.authorKosowska-Gąstoł, Beata - 129190 pl
dc.contributor.authorRybicki, Jan - 214316 pl
dc.contributor.authorSłomczyński, Wojciech - 131931 pl
dc.contributor.authorStolicki, Dariusz - 149808 pl
dc.date.accession2024-02-01pl
dc.date.accessioned2024-02-04T10:47:15Z
dc.date.available2024-02-04T10:47:15Z
dc.date.issued2023pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.additionalBibliogr. s. 8-11pl
dc.description.physical1-11pl
dc.description.versionoryginalna wersja autorska (preprint)
dc.identifier.doi10.48550/arXiv.2306.03079pl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/326732
dc.identifier.weblinkhttps://arxiv.org/abs/2306.03079pl
dc.languageengpl
dc.rightsDodaję tylko opis bibliograficzny*
dc.rights.licenceCC-BY
dc.rights.uri*
dc.share.typeotwarte repozytorium
dc.subtypeArticlepl
dc.titleMachine learning and statistical approaches to measuring similarity of political partiespl
dc.title.containerarXivpl
dc.typeOnlinePaperpl
dspace.entity.typePublication
dc.abstract.enpl
Mapping political party systems to metric policy spaces is one of the major methodological problems in political science. At present, in most political science project this task is performed by domain experts relying on purely qualitative assessments, with all the attendant problems of subjectivity and labor intensiveness. We consider how advances in natural language processing, including large transformer-based language models, can be applied to solve that issue. We apply a number of texts similarity measures to party political programs, analyze how they correlate with each other, and -- in the absence of a satisfactory benchmark -- evaluate them against other measures, including those based on expert surveys, voting records, electoral patterns, and candidate networks. Finally, we consider the prospects of relying on those methods to correct, supplement, and eventually replace expert judgments.
dc.affiliationpl
Wydział Studiów Międzynarodowych i Politycznych : Instytut Nauk Politycznych i Stosunków Międzynarodowych
dc.affiliationpl
Wydział Matematyki i Informatyki : Instytut Matematyki
dc.affiliationpl
Wydział Filologiczny : Instytut Filologii Angielskiej
dc.affiliationpl
Pion Prorektora ds. rozwoju : Centrum Badań Ilościowych nad Polityką
dc.contributor.authorpl
Boratyn, Daria - 201090
dc.contributor.authorpl
Brzyski, Damian - 115462
dc.contributor.authorpl
Kosowska-Gąstoł, Beata - 129190
dc.contributor.authorpl
Rybicki, Jan - 214316
dc.contributor.authorpl
Słomczyński, Wojciech - 131931
dc.contributor.authorpl
Stolicki, Dariusz - 149808
dc.date.accessionpl
2024-02-01
dc.date.accessioned
2024-02-04T10:47:15Z
dc.date.available
2024-02-04T10:47:15Z
dc.date.issuedpl
2023
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.additionalpl
Bibliogr. s. 8-11
dc.description.physicalpl
1-11
dc.description.version
oryginalna wersja autorska (preprint)
dc.identifier.doipl
10.48550/arXiv.2306.03079
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/326732
dc.identifier.weblinkpl
https://arxiv.org/abs/2306.03079
dc.languagepl
eng
dc.rights*
Dodaję tylko opis bibliograficzny
dc.rights.licence
CC-BY
dc.rights.uri*
dc.share.type
otwarte repozytorium
dc.subtypepl
Article
dc.titlepl
Machine learning and statistical approaches to measuring similarity of political parties
dc.title.containerpl
arXiv
dc.typepl
OnlinePaper
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
22
Views per month
Views per city
Rzeplin
5
Krakow
3
Michalowice
3
Katowice
1
Michałowice
1
Milan
1
Wieliczka
1

No access

No Thumbnail Available