Discrete subgroups of normed spaces are free

2025
journal article
article
dc.abstract.enAncel, Dobrowolski and Grabowski (Studia Math. 109 (1994): 277–290) proved that every countable discrete subgroup of the additive group of a normed space is free Abelian, hence isomorphic to the direct sum of a certain number of copies of the additive group of the integers. In the present paper, we take a set-theoretic approach based on the theory of elementary submodels and the Singular Compactness Theorem to remove the cardinality constraint from their result and prove that indeed every discrete subgroup of the additive group of a normed space is free Abelian.
dc.affiliationWydział Matematyki i Informatyki : Instytut Matematyki
dc.contributor.authorKania, Tomasz - 422517
dc.contributor.authorKostana, Ziemowit
dc.date.accession2025-10-21
dc.date.accessioned2025-10-21T05:25:50Z
dc.date.available2025-10-21T05:25:50Z
dc.date.createdat2025-10-02T06:49:31Zen
dc.date.issued2025
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number6
dc.description.physical1650-1655
dc.description.versionostateczna wersja wydawcy
dc.description.volume57
dc.identifier.doi10.1112/blms.70051
dc.identifier.eissn1469-2120
dc.identifier.issn0024-6093
dc.identifier.projectSonata-Bis 13 (2023/50/E/ST1/00067)
dc.identifier.projectDRC AI
dc.identifier.urihttps://ruj.uj.edu.pl/handle/item/563320
dc.identifier.weblinkhttps://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70051
dc.languageeng
dc.language.containereng
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.typeinne
dc.subtypeArticle
dc.titleDiscrete subgroups of normed spaces are free
dc.title.journalBulletin of the London Mathematical Society
dc.typeJournalArticle
dspace.entity.typePublicationen
dc.abstract.en
Ancel, Dobrowolski and Grabowski (Studia Math. 109 (1994): 277–290) proved that every countable discrete subgroup of the additive group of a normed space is free Abelian, hence isomorphic to the direct sum of a certain number of copies of the additive group of the integers. In the present paper, we take a set-theoretic approach based on the theory of elementary submodels and the Singular Compactness Theorem to remove the cardinality constraint from their result and prove that indeed every discrete subgroup of the additive group of a normed space is free Abelian.
dc.affiliation
Wydział Matematyki i Informatyki : Instytut Matematyki
dc.contributor.author
Kania, Tomasz - 422517
dc.contributor.author
Kostana, Ziemowit
dc.date.accession
2025-10-21
dc.date.accessioned
2025-10-21T05:25:50Z
dc.date.available
2025-10-21T05:25:50Z
dc.date.createdaten
2025-10-02T06:49:31Z
dc.date.issued
2025
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.number
6
dc.description.physical
1650-1655
dc.description.version
ostateczna wersja wydawcy
dc.description.volume
57
dc.identifier.doi
10.1112/blms.70051
dc.identifier.eissn
1469-2120
dc.identifier.issn
0024-6093
dc.identifier.project
Sonata-Bis 13 (2023/50/E/ST1/00067)
dc.identifier.project
DRC AI
dc.identifier.uri
https://ruj.uj.edu.pl/handle/item/563320
dc.identifier.weblink
https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70051
dc.language
eng
dc.language.container
eng
dc.rights
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
inne
dc.subtype
Article
dc.title
Discrete subgroups of normed spaces are free
dc.title.journal
Bulletin of the London Mathematical Society
dc.type
JournalArticle
dspace.entity.typeen
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
10
Views per month
Views per city
Krakow
2
Downloads
kania_kostana_discrete_subgroups_of_normed_spaces_2025.pdf
1