Petrov-Galerkin formulation equivallent to the residual minimization method for finding an optimal test function

2022
online paper
conference materials
cris.lastimport.wos2024-04-09T23:00:33Z
dc.abstract.enNumerical solutions of Partial Differential Equations with Finite Element Method have multiple applications in science and engineering. Several challenging problems require special stabilization methods to deliver accurate results of the numerical simulations. The advection-dominated diffusion problem is an example of such problems. They are employed to model pollution propagation in the atmosphere. Unstable numerical methods generate unphysical oscillations, and they make no physical sense. Obtaining accurate and stable numerical simulations is difficult, and the method of stabilization depends on the parameters of the partial differential equations. They require a deep knowledge of an expert in the field of numerical analysis. We propose a method to construct and train an artificial expert in stabilizing numerical simulations based on partial differential equations. We create a neural network-driven artificial intelligence that makes decisions about the method of stabilizing computer simulations. It will automatically stabilize difficult numerical simulations in a linear computational cost by generating the optimal test functions. These test functions can be utilized for building an unconditionally stable system of linear equations. The optimal test functions proposed by artificial intelligence will not depend on the right-hand side, and thus they may be utilized in a large class of PDE-based simulations with different forcing and boundary conditions. We test our method on the model one-dimensional advection-dominated diffusion problem.pl
dc.affiliationWydział Zarządzania i Komunikacji Społecznej : Instytut Studiów Informacyjnychpl
dc.conferenceECCOMAS Congress 2022 : 8th European Congress on Computational Methods in Applied Sciences and Engineering
dc.conference.cityNorwegia
dc.conference.countryOslo
dc.conference.datefinish2022-06-09
dc.conference.datestart2022-06-05
dc.conference.indexscopustrue
dc.contributor.authorPaszyński, Maciej R.pl
dc.contributor.authorSłużalec, Tomasz - 163183 pl
dc.date.accession2023-02-07pl
dc.date.accessioned2023-02-17T15:00:51Z
dc.date.available2023-02-17T15:00:51Z
dc.date.issued2022pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.additionalBibliogr. s. 11-12. Publikacja dostępna online od: 2022-11-24pl
dc.description.conftypeinternationalpl
dc.description.physical1-12pl
dc.description.versionostateczna wersja wydawcy
dc.identifier.doi10.23967/eccomas.2022.079pl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/307958
dc.identifier.weblinkhttps://www.scipedia.com/public/Paszynski_et_al_2022apl
dc.languageengpl
dc.rightsUdzielam licencji. Uznanie autorstwa - Użycie niekomercyjne - Na tych samych warunkach 3.0*
dc.rights.licenceCC-BY-NC-SA
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/legalcode*
dc.share.typeotwarte repozytorium
dc.subject.enPetrov-Galerkin methodpl
dc.subject.enoptimal test functionspl
dc.subject.enDeep Neural Networkspl
dc.subtypeConferenceMaterialspl
dc.titlePetrov-Galerkin formulation equivallent to the residual minimization method for finding an optimal test functionpl
dc.title.containerScipediapl
dc.typeOnlinePaperpl
dspace.entity.typePublication
cris.lastimport.wos
2024-04-09T23:00:33Z
dc.abstract.enpl
Numerical solutions of Partial Differential Equations with Finite Element Method have multiple applications in science and engineering. Several challenging problems require special stabilization methods to deliver accurate results of the numerical simulations. The advection-dominated diffusion problem is an example of such problems. They are employed to model pollution propagation in the atmosphere. Unstable numerical methods generate unphysical oscillations, and they make no physical sense. Obtaining accurate and stable numerical simulations is difficult, and the method of stabilization depends on the parameters of the partial differential equations. They require a deep knowledge of an expert in the field of numerical analysis. We propose a method to construct and train an artificial expert in stabilizing numerical simulations based on partial differential equations. We create a neural network-driven artificial intelligence that makes decisions about the method of stabilizing computer simulations. It will automatically stabilize difficult numerical simulations in a linear computational cost by generating the optimal test functions. These test functions can be utilized for building an unconditionally stable system of linear equations. The optimal test functions proposed by artificial intelligence will not depend on the right-hand side, and thus they may be utilized in a large class of PDE-based simulations with different forcing and boundary conditions. We test our method on the model one-dimensional advection-dominated diffusion problem.
dc.affiliationpl
Wydział Zarządzania i Komunikacji Społecznej : Instytut Studiów Informacyjnych
dc.conference
ECCOMAS Congress 2022 : 8th European Congress on Computational Methods in Applied Sciences and Engineering
dc.conference.city
Norwegia
dc.conference.country
Oslo
dc.conference.datefinish
2022-06-09
dc.conference.datestart
2022-06-05
dc.conference.indexscopus
true
dc.contributor.authorpl
Paszyński, Maciej R.
dc.contributor.authorpl
Służalec, Tomasz - 163183
dc.date.accessionpl
2023-02-07
dc.date.accessioned
2023-02-17T15:00:51Z
dc.date.available
2023-02-17T15:00:51Z
dc.date.issuedpl
2022
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.additionalpl
Bibliogr. s. 11-12. Publikacja dostępna online od: 2022-11-24
dc.description.conftypepl
international
dc.description.physicalpl
1-12
dc.description.version
ostateczna wersja wydawcy
dc.identifier.doipl
10.23967/eccomas.2022.079
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/307958
dc.identifier.weblinkpl
https://www.scipedia.com/public/Paszynski_et_al_2022a
dc.languagepl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa - Użycie niekomercyjne - Na tych samych warunkach 3.0
dc.rights.licence
CC-BY-NC-SA
dc.rights.uri*
http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode
dc.share.type
otwarte repozytorium
dc.subject.enpl
Petrov-Galerkin method
dc.subject.enpl
optimal test functions
dc.subject.enpl
Deep Neural Networks
dc.subtypepl
ConferenceMaterials
dc.titlepl
Petrov-Galerkin formulation equivallent to the residual minimization method for finding an optimal test function
dc.title.containerpl
Scipedia
dc.typepl
OnlinePaper
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
5
Views per month
Views per city
Krakow
2
Katowice
1
Downloads
paszynski_sluzalec_petrov-galerkin_formulation_equivallent_to_the_residual_2022.pdf
77