Continual World : a robotic benchmark for continual reinforcement learning

2022
book section
conference proceedings
dc.abstract.enContinual learning (CL) - the ability to continuously learn, building on previ ously acquired knowledge - is a natural requirement for long-lived autonomous reinforcement learning (RL) agents. While building such agents, one needs to balance opposing desiderata, such as constraints on capacity and compute, the ability to not catastrophically forget, and to exhibit positive transfer on new tasks. Understanding the right trade-off is conceptually and computationally challenging, which we argue has led the community to overly focus on catastrophic forgetting. In response to these issues, we advocate for the need to prioritize forward transfer and propose Continual World, a benchmark consisting of realistic and meaningfully diverse robotic tasks built on top of Meta-World [54] as a testbed. Following an in-depth empirical evaluation of existing CL methods, we pinpoint their limitations and highlight unique algorithmic challenges in the RL setting. Our benchmark aims to provide a meaningful and computationally inexpensive challenge for the community and thus help better understand the performance of existing and future solutions. Information about the benchmark, including the open-source code, is available at https://sites.google.com/view/continualworld.pl
dc.affiliationWydział Matematyki i Informatykipl
dc.affiliationSzkoła Doktorska Nauk Ścisłych i Przyrodniczychpl
dc.conference35th Conference on Neural Information Processing Systems (NeurIPS 2021)
dc.conference.cityVirtual Event
dc.conference.countryNieznany/błędny kraj
dc.conference.datefinish2021-12-14
dc.conference.datestart2021-12-06
dc.conference.seriesAdvances in Neural Information Processing Systems
dc.conference.seriesshortcutNeurIPS
dc.conference.shortcutNeurIPS 2021
dc.contributor.authorKucinski, Lukaszpl
dc.contributor.authorMiłoś, Piotrpl
dc.contributor.authorPascanu, Razvanpl
dc.contributor.authorWołczyk, Maciej - 247731 pl
dc.contributor.authorZając, Michał - 220572 pl
dc.contributor.authorPascanu, Razvan
dc.contributor.editorRanzato, Mpl
dc.contributor.editorBeygelzimer, Apl
dc.contributor.editorDauphin, Ypl
dc.contributor.editorLiang, P.S.pl
dc.contributor.editorWortman Vaughan J.pl
dc.date.accession2022-01-25pl
dc.date.accessioned2022-01-25T16:06:19Z
dc.date.available2022-01-25T16:06:19Z
dc.date.issued2022pl
dc.description.conftypeinternationalpl
dc.description.editionOnline First 2021-12-20pl
dc.description.physical28496-28510
dc.description.seriesAdvances in neural information processing systems
dc.description.seriesnumber34
dc.identifier.bookweblinkhttps://search.worldcat.org/title/1422613707
dc.identifier.isbn978-1-7138-4539-3
dc.identifier.projectPOIR.04.04.00-00-14DE/18-00pl
dc.identifier.seriesissn1049-5258
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/287389
dc.identifier.weblinkhttps://papers.nips.cc/paper/2021/file/ef8446f35513a8d6aa2308357a268a7e-Paper.pdfpl
dc.languageengpl
dc.language.containerengpl
dc.pubinfoRed Hook : Curran Associates, Inc.pl
dc.rightsDodaję tylko opis bibliograficzny*
dc.rights.licenceBez licencji otwartego dostępu
dc.rights.uri*
dc.subtypeConferenceProceedingspl
dc.titleContinual World : a robotic benchmark for continual reinforcement learningpl
dc.title.containerAdvances in Neural Information Processing Systems 34pl
dc.title.volume35th Conference on Neural Information Processing Systems (NeurIPS 2021)pl
dc.typeBookSectionpl
dspace.entity.typePublication
dc.abstract.enpl
Continual learning (CL) - the ability to continuously learn, building on previ ously acquired knowledge - is a natural requirement for long-lived autonomous reinforcement learning (RL) agents. While building such agents, one needs to balance opposing desiderata, such as constraints on capacity and compute, the ability to not catastrophically forget, and to exhibit positive transfer on new tasks. Understanding the right trade-off is conceptually and computationally challenging, which we argue has led the community to overly focus on catastrophic forgetting. In response to these issues, we advocate for the need to prioritize forward transfer and propose Continual World, a benchmark consisting of realistic and meaningfully diverse robotic tasks built on top of Meta-World [54] as a testbed. Following an in-depth empirical evaluation of existing CL methods, we pinpoint their limitations and highlight unique algorithmic challenges in the RL setting. Our benchmark aims to provide a meaningful and computationally inexpensive challenge for the community and thus help better understand the performance of existing and future solutions. Information about the benchmark, including the open-source code, is available at https://sites.google.com/view/continualworld.
dc.affiliationpl
Wydział Matematyki i Informatyki
dc.affiliationpl
Szkoła Doktorska Nauk Ścisłych i Przyrodniczych
dc.conference
35th Conference on Neural Information Processing Systems (NeurIPS 2021)
dc.conference.city
Virtual Event
dc.conference.country
Nieznany/błędny kraj
dc.conference.datefinish
2021-12-14
dc.conference.datestart
2021-12-06
dc.conference.series
Advances in Neural Information Processing Systems
dc.conference.seriesshortcut
NeurIPS
dc.conference.shortcut
NeurIPS 2021
dc.contributor.authorpl
Kucinski, Lukasz
dc.contributor.authorpl
Miłoś, Piotr
dc.contributor.authorpl
Pascanu, Razvan
dc.contributor.authorpl
Wołczyk, Maciej - 247731
dc.contributor.authorpl
Zając, Michał - 220572
dc.contributor.author
Pascanu, Razvan
dc.contributor.editorpl
Ranzato, M
dc.contributor.editorpl
Beygelzimer, A
dc.contributor.editorpl
Dauphin, Y
dc.contributor.editorpl
Liang, P.S.
dc.contributor.editorpl
Wortman Vaughan J.
dc.date.accessionpl
2022-01-25
dc.date.accessioned
2022-01-25T16:06:19Z
dc.date.available
2022-01-25T16:06:19Z
dc.date.issuedpl
2022
dc.description.conftypepl
international
dc.description.editionpl
Online First 2021-12-20
dc.description.physical
28496-28510
dc.description.series
Advances in neural information processing systems
dc.description.seriesnumber
34
dc.identifier.bookweblink
https://search.worldcat.org/title/1422613707
dc.identifier.isbn
978-1-7138-4539-3
dc.identifier.projectpl
POIR.04.04.00-00-14DE/18-00
dc.identifier.seriesissn
1049-5258
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/287389
dc.identifier.weblinkpl
https://papers.nips.cc/paper/2021/file/ef8446f35513a8d6aa2308357a268a7e-Paper.pdf
dc.languagepl
eng
dc.language.containerpl
eng
dc.pubinfopl
Red Hook : Curran Associates, Inc.
dc.rights*
Dodaję tylko opis bibliograficzny
dc.rights.licence
Bez licencji otwartego dostępu
dc.rights.uri*
dc.subtypepl
ConferenceProceedings
dc.titlepl
Continual World : a robotic benchmark for continual reinforcement learning
dc.title.containerpl
Advances in Neural Information Processing Systems 34
dc.title.volumepl
35th Conference on Neural Information Processing Systems (NeurIPS 2021)
dc.typepl
BookSection
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
81
Views per month
Views per city
Krakow
24
Wroclaw
4
Bobrowniki Male
3
Istanbul
3
Central
2
Montreal
2
Tokyo
2
Tsukuba
2
A Coruña
1
Dublin
1

No access

No Thumbnail Available