Pushing the boundary of quantum advantage in hard combinatorial optimization with probabilistic computers

2025
journal article
article
dc.abstract.enRecent demonstrations on specialized benchmarks have reignited excitement for quantum computers, yet their advantage for real-world problems remains an open question. Here, we show that probabilistic computers, co-designed with hardware to implement Monte Carlo algorithms, provide a scalable classical pathway for solving hard optimization problems. We focus on two algorithms applied to three-dimensional spin glasses: discrete-time simulated quantum annealing and adaptive parallel tempering. We benchmark these methods against a leading quantum annealer. For simulated quantum annealing, increasing replicas improves residual energy scaling, consistent with extreme value theory. Adaptive parallel tempering, supported by non-local isoenergetic cluster moves, scales more favorably and outperforms simulated quantum annealing. Field Programmable Gate Arrays or specialized chips can implement these algorithms in modern hardware, leveraging massive parallelism to accelerate them while improving energy efficiency. Our results establish a rigorous classical baseline for assessing practical quantum advantage and present probabilistic computers as a scalable platform for real-world optimization challenges.
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki Teoretycznej
dc.contributor.authorChowdhury, Shuvro
dc.contributor.authorAadit, Navid Anjum
dc.contributor.authorGrimaldi, Andrea
dc.contributor.authorRaimondo, Eleonora
dc.contributor.authorRaut, Atharva
dc.contributor.authorLott, P. Aaron
dc.contributor.authorMentink, Johan H.
dc.contributor.authorRams, Marek - 142333
dc.contributor.authorRicci-Tersenghi, Federico
dc.contributor.authorChiappini, Massimo
dc.contributor.authorTheogarajan, Luke S.
dc.contributor.authorSrimani, Tathagata
dc.contributor.authorFinocchio, Giovanni
dc.contributor.authorMohseni, Masoud
dc.contributor.authorCamsari, Kerem Y.
dc.date.accessioned2025-10-21T14:38:49Z
dc.date.available2025-10-21T14:38:49Z
dc.date.createdat2025-10-21T08:48:43Zen
dc.date.issued2025
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number1
dc.description.versionostateczna wersja wydawcy
dc.description.volume16
dc.identifier.articleid9193
dc.identifier.doi10.1038/s41467-025-64235-y
dc.identifier.issn2041-1723
dc.identifier.projectDRC AI
dc.identifier.urihttps://ruj.uj.edu.pl/handle/item/563370
dc.languageeng
dc.language.containereng
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.typeotwarte czasopismo
dc.subtypeArticle
dc.titlePushing the boundary of quantum advantage in hard combinatorial optimization with probabilistic computers
dc.title.journalNature Communications
dc.typeJournalArticle
dspace.entity.typePublicationen
dc.abstract.en
Recent demonstrations on specialized benchmarks have reignited excitement for quantum computers, yet their advantage for real-world problems remains an open question. Here, we show that probabilistic computers, co-designed with hardware to implement Monte Carlo algorithms, provide a scalable classical pathway for solving hard optimization problems. We focus on two algorithms applied to three-dimensional spin glasses: discrete-time simulated quantum annealing and adaptive parallel tempering. We benchmark these methods against a leading quantum annealer. For simulated quantum annealing, increasing replicas improves residual energy scaling, consistent with extreme value theory. Adaptive parallel tempering, supported by non-local isoenergetic cluster moves, scales more favorably and outperforms simulated quantum annealing. Field Programmable Gate Arrays or specialized chips can implement these algorithms in modern hardware, leveraging massive parallelism to accelerate them while improving energy efficiency. Our results establish a rigorous classical baseline for assessing practical quantum advantage and present probabilistic computers as a scalable platform for real-world optimization challenges.
dc.affiliation
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki Teoretycznej
dc.contributor.author
Chowdhury, Shuvro
dc.contributor.author
Aadit, Navid Anjum
dc.contributor.author
Grimaldi, Andrea
dc.contributor.author
Raimondo, Eleonora
dc.contributor.author
Raut, Atharva
dc.contributor.author
Lott, P. Aaron
dc.contributor.author
Mentink, Johan H.
dc.contributor.author
Rams, Marek - 142333
dc.contributor.author
Ricci-Tersenghi, Federico
dc.contributor.author
Chiappini, Massimo
dc.contributor.author
Theogarajan, Luke S.
dc.contributor.author
Srimani, Tathagata
dc.contributor.author
Finocchio, Giovanni
dc.contributor.author
Mohseni, Masoud
dc.contributor.author
Camsari, Kerem Y.
dc.date.accessioned
2025-10-21T14:38:49Z
dc.date.available
2025-10-21T14:38:49Z
dc.date.createdaten
2025-10-21T08:48:43Z
dc.date.issued
2025
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.number
1
dc.description.version
ostateczna wersja wydawcy
dc.description.volume
16
dc.identifier.articleid
9193
dc.identifier.doi
10.1038/s41467-025-64235-y
dc.identifier.issn
2041-1723
dc.identifier.project
DRC AI
dc.identifier.uri
https://ruj.uj.edu.pl/handle/item/563370
dc.language
eng
dc.language.container
eng
dc.rights
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
otwarte czasopismo
dc.subtype
Article
dc.title
Pushing the boundary of quantum advantage in hard combinatorial optimization with probabilistic computers
dc.title.journal
Nature Communications
dc.type
JournalArticle
dspace.entity.typeen
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
7
Views per month
Views per city
Krakow
1
Downloads
rams_et-al_pushing_the_boundary_of_quantum_advantage_2025.pdf
2