Binary sequences meet the Fibonacci sequence

2025
journal article
article
dc.abstract.enWe introduce a new family of number sequences (f (n))$_{n∈N}$ , governed by the recurrence relation f (n) = af (n − un − 1) + bf (n − un − 2), where u = (un)n∈N is a sequence with values 0, 1. Our study focuses on the properties of the sequence of quotients h(n) = f (n + 1)/f (n) and its set of values V(f ) = {h(n) : n ∈ N} for various u. We give a sufficient condition for finiteness of V(f ) and automaticity of (h(n))$_{n∈N}$ , which holds in particular when u is the famous Prouhet-Thue-Morse sequence. In the automatic case, a constructive approach is used, with the help of the software Walnut. On the other hand, we prove that the set V(f ) is infinite for other special binary sequences u, and obtain a trichotomy in its topological type when u is eventually periodic.
dc.affiliationWydział Matematyki i Informatyki : Instytut Matematyki
dc.contributor.authorMiska, Piotr - 191205
dc.contributor.authorSobolewski, Bartosz - 377840
dc.contributor.authorUlas, Maciej - 147984
dc.date.accession2025
dc.date.accessioned2025-06-04T06:42:24Z
dc.date.available2025-06-04T06:42:24Z
dc.date.createdat2025-05-30T08:19:00Zen
dc.date.issued2025
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.versionostateczna wersja wydawcy
dc.description.volume169
dc.identifier.articleid102914
dc.identifier.doi10.1016/j.aam.2025.102914
dc.identifier.eissn1090-2074
dc.identifier.issn0196-8858
dc.identifier.projectUMO-2019/34/E/ST1/00094
dc.identifier.urihttps://ruj.uj.edu.pl/handle/item/553020
dc.identifier.weblinkhttps://www.sciencedirect.com/science/article/pii/S0196885825000764?via%3Dihub
dc.languageeng
dc.language.containereng
dc.rightsDodaję tylko opis bibliograficzny
dc.rights.licenceCC-BY
dc.share.typeinne
dc.subject.enbinary sequence
dc.subject.enautomatic sequence
dc.subject.enrecurrence relation
dc.subject.enmeta-Fibonacci sequence
dc.subtypeArticle
dc.titleBinary sequences meet the Fibonacci sequence
dc.title.journalAdvances in Applied Mathematics
dc.typeJournalArticle
dspace.entity.typePublicationen
dc.abstract.en
We introduce a new family of number sequences (f (n))$_{n∈N}$ , governed by the recurrence relation f (n) = af (n − un − 1) + bf (n − un − 2), where u = (un)n∈N is a sequence with values 0, 1. Our study focuses on the properties of the sequence of quotients h(n) = f (n + 1)/f (n) and its set of values V(f ) = {h(n) : n ∈ N} for various u. We give a sufficient condition for finiteness of V(f ) and automaticity of (h(n))$_{n∈N}$ , which holds in particular when u is the famous Prouhet-Thue-Morse sequence. In the automatic case, a constructive approach is used, with the help of the software Walnut. On the other hand, we prove that the set V(f ) is infinite for other special binary sequences u, and obtain a trichotomy in its topological type when u is eventually periodic.
dc.affiliation
Wydział Matematyki i Informatyki : Instytut Matematyki
dc.contributor.author
Miska, Piotr - 191205
dc.contributor.author
Sobolewski, Bartosz - 377840
dc.contributor.author
Ulas, Maciej - 147984
dc.date.accession
2025
dc.date.accessioned
2025-06-04T06:42:24Z
dc.date.available
2025-06-04T06:42:24Z
dc.date.createdaten
2025-05-30T08:19:00Z
dc.date.issued
2025
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.version
ostateczna wersja wydawcy
dc.description.volume
169
dc.identifier.articleid
102914
dc.identifier.doi
10.1016/j.aam.2025.102914
dc.identifier.eissn
1090-2074
dc.identifier.issn
0196-8858
dc.identifier.project
UMO-2019/34/E/ST1/00094
dc.identifier.uri
https://ruj.uj.edu.pl/handle/item/553020
dc.identifier.weblink
https://www.sciencedirect.com/science/article/pii/S0196885825000764?via%3Dihub
dc.language
eng
dc.language.container
eng
dc.rights
Dodaję tylko opis bibliograficzny
dc.rights.licence
CC-BY
dc.share.type
inne
dc.subject.en
binary sequence
dc.subject.en
automatic sequence
dc.subject.en
recurrence relation
dc.subject.en
meta-Fibonacci sequence
dc.subtype
Article
dc.title
Binary sequences meet the Fibonacci sequence
dc.title.journal
Advances in Applied Mathematics
dc.type
JournalArticle
dspace.entity.typeen
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
2
Views per month

No access

No Thumbnail Available