Simple view
Full metadata view
Authors
Statistics
Binary sequences meet the Fibonacci sequence
binary sequence
automatic sequence
recurrence relation
meta-Fibonacci sequence
We introduce a new family of number sequences (f (n))
dc.abstract.en | We introduce a new family of number sequences (f (n))$_{n∈N}$ , governed by the recurrence relation f (n) = af (n − un − 1) + bf (n − un − 2), where u = (un)n∈N is a sequence with values 0, 1. Our study focuses on the properties of the sequence of quotients h(n) = f (n + 1)/f (n) and its set of values V(f ) = {h(n) : n ∈ N} for various u. We give a sufficient condition for finiteness of V(f ) and automaticity of (h(n))$_{n∈N}$ , which holds in particular when u is the famous Prouhet-Thue-Morse sequence. In the automatic case, a constructive approach is used, with the help of the software Walnut. On the other hand, we prove that the set V(f ) is infinite for other special binary sequences u, and obtain a trichotomy in its topological type when u is eventually periodic. | |
dc.affiliation | Wydział Matematyki i Informatyki : Instytut Matematyki | |
dc.contributor.author | Miska, Piotr - 191205 | |
dc.contributor.author | Sobolewski, Bartosz - 377840 | |
dc.contributor.author | Ulas, Maciej - 147984 | |
dc.date.accession | 2025 | |
dc.date.accessioned | 2025-06-04T06:42:24Z | |
dc.date.available | 2025-06-04T06:42:24Z | |
dc.date.createdat | 2025-05-30T08:19:00Z | en |
dc.date.issued | 2025 | |
dc.date.openaccess | 0 | |
dc.description.accesstime | w momencie opublikowania | |
dc.description.version | ostateczna wersja wydawcy | |
dc.description.volume | 169 | |
dc.identifier.articleid | 102914 | |
dc.identifier.doi | 10.1016/j.aam.2025.102914 | |
dc.identifier.eissn | 1090-2074 | |
dc.identifier.issn | 0196-8858 | |
dc.identifier.project | UMO-2019/34/E/ST1/00094 | |
dc.identifier.uri | https://ruj.uj.edu.pl/handle/item/553020 | |
dc.identifier.weblink | https://www.sciencedirect.com/science/article/pii/S0196885825000764?via%3Dihub | |
dc.language | eng | |
dc.language.container | eng | |
dc.rights | Dodaję tylko opis bibliograficzny | |
dc.rights.licence | CC-BY | |
dc.share.type | inne | |
dc.subject.en | binary sequence | |
dc.subject.en | automatic sequence | |
dc.subject.en | recurrence relation | |
dc.subject.en | meta-Fibonacci sequence | |
dc.subtype | Article | |
dc.title | Binary sequences meet the Fibonacci sequence | |
dc.title.journal | Advances in Applied Mathematics | |
dc.type | JournalArticle | |
dspace.entity.type | Publication | en |