Impact of the ADMIRE reconstruction algorithm combined with the Sa36 kernel on quantitative measurement of coronary artery calcification in AI : a single-arm prospective study

2025
journal article
article
dc.abstract.enPurpose: Accurate quantification of coronary artery calcium (CAC) via computed tomography (CT) imaging is essential for effective cardiovascular risk assessment. This study investigates the impact of different iteration levels in the advanced model-based iterative reconstruction (ADMIRE) algorithm on artificial intelligence-driven CAC quantification and subsequent risk stratification, with filtered back projection (FBP) serving as the reference. Material and methods: For 254 patients undergoing coronary CT angiography (120 kVp, automated tube current), raw data were reconstructed using FBP and ADMIRE levels 1-5 (kernel Sa36, 3.0 mm slice thickness, 1.5 mm spacing). AI-derived CAC parameters (volume, mass, Agatston score) and risk stratification were compared across reconstruction groups. Statistical analysis employed the Friedman test, one-way analysis of variance, and c2 test. Results: Compared to FBP, ADMIRE 1-5 reduced image noise by 9.70% to 49.76% (noise: 14.95 ± 2.26 HU vs. 7.55 ± 1.40 HU, F = 455.105, p < 0.001). Maximum CAC CT values progressively decreased with higher ADMIRE levels (FBP: 458.50 [306.00-645.00] HU vs. ADMIRE 5: 432.50 [281.75-620.75] HU; c² = 455.105, p < 0.001). CAC volume, mass, and Agatston scores declined significantly (p < 0.001 for all): volume decreased by 8.56-32.55% (FBP: 47.56 ± 5.93 mm³ vs. ADMIRE 5: 21.77 ± 3.46 mm³; F = 32.310); mass decreased by 8.73-32.57% (F = 29.477); and Agatston scores decreased by 8.77-33.13% (F = 31.104). Risk stratification shifted in 24/161 patients (14.91%) with detectable CAC. The effective radiation dose was 0.61 ± 0.18 mSv. Conclusions: ADMIRE reconstruction reduces image noise but progressively lowers CAC quantification (volume, mass, Agatston score) and maximum CT values, leading to underestimation of cardiovascular risk in a subset of patients. Caution is warranted when applying ADMIRE iterative reconstruction for CAC scoring.
dc.contributor.authorDu, Huayang
dc.contributor.authorHe, Quanyu
dc.contributor.authorRen, Jia
dc.contributor.authorJiang, Nan
dc.contributor.authorWang, Yanling
dc.contributor.authorYang, Guisong
dc.contributor.authorHan, Fei
dc.contributor.authorXu, Huahu
dc.date.accessioned2025-08-28T11:30:00Z
dc.date.available2025-08-28T11:30:00Z
dc.date.createdat2025-08-28T11:30:00Zen
dc.date.issued2025
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.additionalBibliogr. s. e365-e366
dc.description.physicale356-e366
dc.description.versionostateczna wersja wydawcy
dc.description.volume90
dc.identifier.doi10.5114/pjr/205465
dc.identifier.issn1733-134X
dc.identifier.projectDRC AI
dc.identifier.urihttps://ruj.uj.edu.pl/handle/item/559390
dc.languageeng
dc.language.containereng
dc.rightsUdzielam licencji. Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 Międzynarodowa
dc.rights.licenceCC-BY-NC-ND
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.pl
dc.share.typeotwarte czasopismo
dc.subject.encoronary artery
dc.subject.encoronary artery calcium
dc.subject.eniterative reconstruction
dc.subject.encomputed tomography
dc.subject.enadvanced modelled iterative reconstruction
dc.subtypeArticle
dc.titleImpact of the ADMIRE reconstruction algorithm combined with the Sa36 kernel on quantitative measurement of coronary artery calcification in AI : a single-arm prospective study
dc.title.journalPolish Journal of Radiology
dc.typeJournalArticle
dspace.entity.typePublicationen
dc.abstract.en
Purpose: Accurate quantification of coronary artery calcium (CAC) via computed tomography (CT) imaging is essential for effective cardiovascular risk assessment. This study investigates the impact of different iteration levels in the advanced model-based iterative reconstruction (ADMIRE) algorithm on artificial intelligence-driven CAC quantification and subsequent risk stratification, with filtered back projection (FBP) serving as the reference. Material and methods: For 254 patients undergoing coronary CT angiography (120 kVp, automated tube current), raw data were reconstructed using FBP and ADMIRE levels 1-5 (kernel Sa36, 3.0 mm slice thickness, 1.5 mm spacing). AI-derived CAC parameters (volume, mass, Agatston score) and risk stratification were compared across reconstruction groups. Statistical analysis employed the Friedman test, one-way analysis of variance, and c2 test. Results: Compared to FBP, ADMIRE 1-5 reduced image noise by 9.70% to 49.76% (noise: 14.95 ± 2.26 HU vs. 7.55 ± 1.40 HU, F = 455.105, p < 0.001). Maximum CAC CT values progressively decreased with higher ADMIRE levels (FBP: 458.50 [306.00-645.00] HU vs. ADMIRE 5: 432.50 [281.75-620.75] HU; c² = 455.105, p < 0.001). CAC volume, mass, and Agatston scores declined significantly (p < 0.001 for all): volume decreased by 8.56-32.55% (FBP: 47.56 ± 5.93 mm³ vs. ADMIRE 5: 21.77 ± 3.46 mm³; F = 32.310); mass decreased by 8.73-32.57% (F = 29.477); and Agatston scores decreased by 8.77-33.13% (F = 31.104). Risk stratification shifted in 24/161 patients (14.91%) with detectable CAC. The effective radiation dose was 0.61 ± 0.18 mSv. Conclusions: ADMIRE reconstruction reduces image noise but progressively lowers CAC quantification (volume, mass, Agatston score) and maximum CT values, leading to underestimation of cardiovascular risk in a subset of patients. Caution is warranted when applying ADMIRE iterative reconstruction for CAC scoring.
dc.contributor.author
Du, Huayang
dc.contributor.author
He, Quanyu
dc.contributor.author
Ren, Jia
dc.contributor.author
Jiang, Nan
dc.contributor.author
Wang, Yanling
dc.contributor.author
Yang, Guisong
dc.contributor.author
Han, Fei
dc.contributor.author
Xu, Huahu
dc.date.accessioned
2025-08-28T11:30:00Z
dc.date.available
2025-08-28T11:30:00Z
dc.date.createdaten
2025-08-28T11:30:00Z
dc.date.issued
2025
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.additional
Bibliogr. s. e365-e366
dc.description.physical
e356-e366
dc.description.version
ostateczna wersja wydawcy
dc.description.volume
90
dc.identifier.doi
10.5114/pjr/205465
dc.identifier.issn
1733-134X
dc.identifier.project
DRC AI
dc.identifier.uri
https://ruj.uj.edu.pl/handle/item/559390
dc.language
eng
dc.language.container
eng
dc.rights
Udzielam licencji. Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 Międzynarodowa
dc.rights.licence
CC-BY-NC-ND
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.pl
dc.share.type
otwarte czasopismo
dc.subject.en
coronary artery
dc.subject.en
coronary artery calcium
dc.subject.en
iterative reconstruction
dc.subject.en
computed tomography
dc.subject.en
advanced modelled iterative reconstruction
dc.subtype
Article
dc.title
Impact of the ADMIRE reconstruction algorithm combined with the Sa36 kernel on quantitative measurement of coronary artery calcification in AI : a single-arm prospective study
dc.title.journal
Polish Journal of Radiology
dc.type
JournalArticle
dspace.entity.typeen
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
7
Views per month
Views per city
Krakow
5
Downloads
du_et-al_impact_of_the_admire_reconstruction_2025.pdf
3