Computed tomography features in prediction of histological differentiation of pancreatic neuroendocrine neoplasms : a single-centre retrospective cohort stud

2024
journal article
article
dc.abstract.enPurpose: The aim of our study was to analyse the histological differentiation and computed tomography imaging features of pancreatic neuroendocrine neoplasms (PNENs). Material and methods: We performed a retrospective single-centre cohort study of 157 patients with histologically confirmed PNEN. We compared the results of the preoperative biopsy from the tumour with reports of the multi-slice computed tomography performed by a radiologist with 30 years of clinical practice. Results: Specific computed tomography (CT) features are associated with histological differentiation, such as enhancement in the arterial phase (p = 0.032), Wirsung's duct dilatation (p = 0.001), other organ infiltration (p < 0.001), distant metastases (p < 0.001), and enlarged regional lymph nodes (p = 0.018). When there is an organ infiltration, the likelihood of the tumour having histological malignancy grades G2 or G3 triples (95% CI: 1.21-8.06). Likewise, the existence of distant metastases increases the risk almost fourfold (95% CI: 1.44-10.61), and a tumour size of 2 cm or larger is linked to a nearly threefold rise in the risk of histological malignancy grades G2 or G3 (95% CI: 1.21-6.24). Conclusions: Certain CT characteristics: enhancement during the arterial phase, Wirsung’s duct dilatation, organ infiltration, distant metastases, and the enlargement of regional lymph nodes are linked to histological differentiation.
dc.contributor.authorHerzyk, Jan Krzysztof
dc.contributor.authorMajewska, Karolina
dc.contributor.authorJakimów, Krzysztof
dc.contributor.authorCiesielka, Jakub
dc.contributor.authorPilch-Kowalczyk, Joanna
dc.date.accessioned2025-08-20T07:43:52Z
dc.date.available2025-08-20T07:43:52Z
dc.date.createdat2025-08-20T07:43:52Zen
dc.date.issued2024
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.additionalBibliogr. s. e462-e463
dc.description.physicale457-e463
dc.description.versionostateczna wersja wydawcy
dc.description.volume89
dc.identifier.doi10.5114/pjr/191838
dc.identifier.issn1733-134X
dc.identifier.projectDRC AI
dc.identifier.urihttps://ruj.uj.edu.pl/handle/item/559096
dc.languageeng
dc.language.containereng
dc.rightsUdzielam licencji. Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 Międzynarodowa
dc.rights.licenceCC-BY-NC-ND
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.pl
dc.share.typeotwarte czasopismo
dc.subject.encomputed tomography
dc.subject.enKi-67
dc.subject.enpancreatic neuroendocrine neoplasms
dc.subject.enhistological differentiation
dc.subtypeArticle
dc.titleComputed tomography features in prediction of histological differentiation of pancreatic neuroendocrine neoplasms : a single-centre retrospective cohort stud
dc.title.journalPolish Journal of Radiology
dc.typeJournalArticle
dspace.entity.typePublicationen
dc.abstract.en
Purpose: The aim of our study was to analyse the histological differentiation and computed tomography imaging features of pancreatic neuroendocrine neoplasms (PNENs). Material and methods: We performed a retrospective single-centre cohort study of 157 patients with histologically confirmed PNEN. We compared the results of the preoperative biopsy from the tumour with reports of the multi-slice computed tomography performed by a radiologist with 30 years of clinical practice. Results: Specific computed tomography (CT) features are associated with histological differentiation, such as enhancement in the arterial phase (p = 0.032), Wirsung's duct dilatation (p = 0.001), other organ infiltration (p < 0.001), distant metastases (p < 0.001), and enlarged regional lymph nodes (p = 0.018). When there is an organ infiltration, the likelihood of the tumour having histological malignancy grades G2 or G3 triples (95% CI: 1.21-8.06). Likewise, the existence of distant metastases increases the risk almost fourfold (95% CI: 1.44-10.61), and a tumour size of 2 cm or larger is linked to a nearly threefold rise in the risk of histological malignancy grades G2 or G3 (95% CI: 1.21-6.24). Conclusions: Certain CT characteristics: enhancement during the arterial phase, Wirsung’s duct dilatation, organ infiltration, distant metastases, and the enlargement of regional lymph nodes are linked to histological differentiation.
dc.contributor.author
Herzyk, Jan Krzysztof
dc.contributor.author
Majewska, Karolina
dc.contributor.author
Jakimów, Krzysztof
dc.contributor.author
Ciesielka, Jakub
dc.contributor.author
Pilch-Kowalczyk, Joanna
dc.date.accessioned
2025-08-20T07:43:52Z
dc.date.available
2025-08-20T07:43:52Z
dc.date.createdaten
2025-08-20T07:43:52Z
dc.date.issued
2024
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.additional
Bibliogr. s. e462-e463
dc.description.physical
e457-e463
dc.description.version
ostateczna wersja wydawcy
dc.description.volume
89
dc.identifier.doi
10.5114/pjr/191838
dc.identifier.issn
1733-134X
dc.identifier.project
DRC AI
dc.identifier.uri
https://ruj.uj.edu.pl/handle/item/559096
dc.language
eng
dc.language.container
eng
dc.rights
Udzielam licencji. Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 Międzynarodowa
dc.rights.licence
CC-BY-NC-ND
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.pl
dc.share.type
otwarte czasopismo
dc.subject.en
computed tomography
dc.subject.en
Ki-67
dc.subject.en
pancreatic neuroendocrine neoplasms
dc.subject.en
histological differentiation
dc.subtype
Article
dc.title
Computed tomography features in prediction of histological differentiation of pancreatic neuroendocrine neoplasms : a single-centre retrospective cohort stud
dc.title.journal
Polish Journal of Radiology
dc.type
JournalArticle
dspace.entity.typeen
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
4
Views per month
Views per city
Krakow
4
Downloads
herzyk_et-al_computed_tomography_features_in_prediction_of_histological_2024.pdf
2