Simple view
Full metadata view
Authors
Statistics
Uniqueness results for the Euler and Helmholtz operators from the variational calculus
fibered manifold
Lagrangian
Euler map
Helmholtz map
natural operator
The Euler operator
The Helmholtz operator
Let
| dc.abstract.en | Let $\textit{m}, \textit{n}, \textit{s}$ be positive integers. Let $\boldsymbol{FM}_{\textit{m},\textit{n}}$ denotes the category of fibered manifolds with $\textit{m}$-dimensional bases and $\textit{n}$-dimensional fibres and their fibered local diffeomorphisms. We prove that if $\textit{m}\geq 3$ than any $\boldsymbol{FM}_{\textit{m},\textit{n}}$-natural operator C transforming pairs $\left ( \lambda , \textit{X} \right )$ of Lagrangians $\lambda : \textit{J}^{\textit{8}}\textit{Y}\rightarrow \wedge ^{\textit{m}}\textit{T}^{*}\textit{M}$ on $\boldsymbol{FM}_{\textit{m},\textit{n}}$-object $\textit{Y}\rightarrow \textit{M}$ and vector fields $\textit{X}$ on $\textit{M}$ into Euler maps $\textit{C}\left ( \lambda , \textit{X} \right ):\textit{J}^{2\textit{s}}\textit{Y}\rightarrow \textit{V}^{*}\textit{Y}\otimes \wedge ^{\textit{m}}\textit{T}^{*}\textit{M}$ on $\textit{Y}$ is of the form $\textit{C}\left ( \lambda ,\textit{X} \right )= \textit{cE}\left ( \lambda \right ), \textit{c}\in \textbf{R}$, where $\mathit{E}$ is the Euler operator. We also prove that if $\textit{m}\geq 2$ and $\textit{n}\geq 2$, than any $\boldsymbol{FM}_{\textit{m},\textit{n}}$-natural operator $\textit{D}$ transforming tuples $\left ( \epsilon , \textit{X} \right )$ of Euler maps $\epsilon :\textit{J}^{\textit{8}}\textit{Y}\to \textit{V}^{*}\textit{Y}\otimes \wedge ^{\textit{m}}\textit{T}^{*}\textit{M}$ on $\boldsymbol{FM}_{\textit{m},\textit{n}}$-object $\textit{Y}\to \textit{M}$ and vector fields $\textit{X}$ on $\textit{M}$ into Helmholtz maps $\textit{D}\left ( \epsilon , \textit{X} \right ):\textit{J}^{2\textit{s}}\textit{Y}\rightarrow \textit{V}^{*}\textit{J}^{\textit{8}}\textit{Y}\otimes \textit{V}^{*}\textit{Y}\otimes \wedge ^{\textit{m}}\textit{T}^{*}\textit{M}$ on $\textit{Y}\rightarrow \textit{M}$ is of the form $\textit{D}\left ( \epsilon ,\textit{X} \right )= \textit{cH}\left ( \epsilon \right )$ for a real number $\textit{c}$, where $\textit{H}$ is the Helmholtz operator. | |
| dc.affiliation | Wydział Matematyki i Informatyki : Instytut Matematyki | |
| dc.contributor.author | Mikulski, Włodzimierz - 130617 | |
| dc.date.accession | 2025-11-03 | |
| dc.date.accessioned | 2025-11-03T06:18:36Z | |
| dc.date.available | 2025-11-03T06:18:36Z | |
| dc.date.createdat | 2025-10-20T08:42:31Z | en |
| dc.date.issued | 2025 | |
| dc.date.openaccess | 0 | |
| dc.description.accesstime | w momencie opublikowania | |
| dc.description.number | 3 | |
| dc.description.version | ostateczna wersja wydawcy | |
| dc.description.volume | 119 | |
| dc.identifier.articleid | 85 | |
| dc.identifier.doi | 10.1007/s13398-025-01751-y | |
| dc.identifier.eissn | 1579-1505 | |
| dc.identifier.issn | 1578-7303 | |
| dc.identifier.project | DRC AI | |
| dc.identifier.uri | https://ruj.uj.edu.pl/handle/item/564702 | |
| dc.identifier.weblink | https://link.springer.com/article/10.1007/s13398-025-01751-y#citeas | |
| dc.language | eng | |
| dc.language.container | eng | |
| dc.rights | Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa | |
| dc.rights.licence | CC-BY | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/legalcode.pl | |
| dc.share.type | inne | |
| dc.subject.en | fibered manifold | |
| dc.subject.en | Lagrangian | |
| dc.subject.en | Euler map | |
| dc.subject.en | Helmholtz map | |
| dc.subject.en | natural operator | |
| dc.subject.en | The Euler operator | |
| dc.subject.en | The Helmholtz operator | |
| dc.subtype | Article | |
| dc.title | Uniqueness results for the Euler and Helmholtz operators from the variational calculus | |
| dc.title.journal | Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas | |
| dc.type | JournalArticle | |
| dspace.entity.type | Publication | en |