Uniqueness results for the Euler and Helmholtz operators from the variational calculus

2025
journal article
article
dc.abstract.enLet $\textit{m}, \textit{n}, \textit{s}$ be positive integers. Let $\boldsymbol{FM}_{\textit{m},\textit{n}}$ denotes the category of fibered manifolds with $\textit{m}$-dimensional bases and $\textit{n}$-dimensional fibres and their fibered local diffeomorphisms. We prove that if $\textit{m}\geq 3$ than any $\boldsymbol{FM}_{\textit{m},\textit{n}}$-natural operator C transforming pairs $\left ( \lambda , \textit{X} \right )$ of Lagrangians $\lambda : \textit{J}^{\textit{8}}\textit{Y}\rightarrow \wedge ^{\textit{m}}\textit{T}^{*}\textit{M}$ on $\boldsymbol{FM}_{\textit{m},\textit{n}}$-object $\textit{Y}\rightarrow \textit{M}$ and vector fields $\textit{X}$ on $\textit{M}$ into Euler maps $\textit{C}\left ( \lambda , \textit{X} \right ):\textit{J}^{2\textit{s}}\textit{Y}\rightarrow \textit{V}^{*}\textit{Y}\otimes \wedge ^{\textit{m}}\textit{T}^{*}\textit{M}$ on $\textit{Y}$ is of the form $\textit{C}\left ( \lambda ,\textit{X} \right )= \textit{cE}\left ( \lambda \right ), \textit{c}\in \textbf{R}$, where $\mathit{E}$ is the Euler operator. We also prove that if $\textit{m}\geq 2$ and $\textit{n}\geq 2$, than any $\boldsymbol{FM}_{\textit{m},\textit{n}}$-natural operator $\textit{D}$ transforming tuples $\left ( \epsilon , \textit{X} \right )$ of Euler maps $\epsilon :\textit{J}^{\textit{8}}\textit{Y}\to \textit{V}^{*}\textit{Y}\otimes \wedge ^{\textit{m}}\textit{T}^{*}\textit{M}$ on $\boldsymbol{FM}_{\textit{m},\textit{n}}$-object $\textit{Y}\to \textit{M}$ and vector fields $\textit{X}$ on $\textit{M}$ into Helmholtz maps $\textit{D}\left ( \epsilon , \textit{X} \right ):\textit{J}^{2\textit{s}}\textit{Y}\rightarrow \textit{V}^{*}\textit{J}^{\textit{8}}\textit{Y}\otimes \textit{V}^{*}\textit{Y}\otimes \wedge ^{\textit{m}}\textit{T}^{*}\textit{M}$ on $\textit{Y}\rightarrow \textit{M}$ is of the form $\textit{D}\left ( \epsilon ,\textit{X} \right )= \textit{cH}\left ( \epsilon \right )$ for a real number $\textit{c}$, where $\textit{H}$ is the Helmholtz operator.
dc.affiliationWydział Matematyki i Informatyki : Instytut Matematyki
dc.contributor.authorMikulski, Włodzimierz - 130617
dc.date.accession2025-11-03
dc.date.accessioned2025-11-03T06:18:36Z
dc.date.available2025-11-03T06:18:36Z
dc.date.createdat2025-10-20T08:42:31Zen
dc.date.issued2025
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number3
dc.description.versionostateczna wersja wydawcy
dc.description.volume119
dc.identifier.articleid85
dc.identifier.doi10.1007/s13398-025-01751-y
dc.identifier.eissn1579-1505
dc.identifier.issn1578-7303
dc.identifier.projectDRC AI
dc.identifier.urihttps://ruj.uj.edu.pl/handle/item/564702
dc.identifier.weblinkhttps://link.springer.com/article/10.1007/s13398-025-01751-y#citeas
dc.languageeng
dc.language.containereng
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.typeinne
dc.subject.enfibered manifold
dc.subject.enLagrangian
dc.subject.enEuler map
dc.subject.enHelmholtz map
dc.subject.ennatural operator
dc.subject.enThe Euler operator
dc.subject.enThe Helmholtz operator
dc.subtypeArticle
dc.titleUniqueness results for the Euler and Helmholtz operators from the variational calculus
dc.title.journalRevista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas
dc.typeJournalArticle
dspace.entity.typePublicationen
dc.abstract.en
Let $\textit{m}, \textit{n}, \textit{s}$ be positive integers. Let $\boldsymbol{FM}_{\textit{m},\textit{n}}$ denotes the category of fibered manifolds with $\textit{m}$-dimensional bases and $\textit{n}$-dimensional fibres and their fibered local diffeomorphisms. We prove that if $\textit{m}\geq 3$ than any $\boldsymbol{FM}_{\textit{m},\textit{n}}$-natural operator C transforming pairs $\left ( \lambda , \textit{X} \right )$ of Lagrangians $\lambda : \textit{J}^{\textit{8}}\textit{Y}\rightarrow \wedge ^{\textit{m}}\textit{T}^{*}\textit{M}$ on $\boldsymbol{FM}_{\textit{m},\textit{n}}$-object $\textit{Y}\rightarrow \textit{M}$ and vector fields $\textit{X}$ on $\textit{M}$ into Euler maps $\textit{C}\left ( \lambda , \textit{X} \right ):\textit{J}^{2\textit{s}}\textit{Y}\rightarrow \textit{V}^{*}\textit{Y}\otimes \wedge ^{\textit{m}}\textit{T}^{*}\textit{M}$ on $\textit{Y}$ is of the form $\textit{C}\left ( \lambda ,\textit{X} \right )= \textit{cE}\left ( \lambda \right ), \textit{c}\in \textbf{R}$, where $\mathit{E}$ is the Euler operator. We also prove that if $\textit{m}\geq 2$ and $\textit{n}\geq 2$, than any $\boldsymbol{FM}_{\textit{m},\textit{n}}$-natural operator $\textit{D}$ transforming tuples $\left ( \epsilon , \textit{X} \right )$ of Euler maps $\epsilon :\textit{J}^{\textit{8}}\textit{Y}\to \textit{V}^{*}\textit{Y}\otimes \wedge ^{\textit{m}}\textit{T}^{*}\textit{M}$ on $\boldsymbol{FM}_{\textit{m},\textit{n}}$-object $\textit{Y}\to \textit{M}$ and vector fields $\textit{X}$ on $\textit{M}$ into Helmholtz maps $\textit{D}\left ( \epsilon , \textit{X} \right ):\textit{J}^{2\textit{s}}\textit{Y}\rightarrow \textit{V}^{*}\textit{J}^{\textit{8}}\textit{Y}\otimes \textit{V}^{*}\textit{Y}\otimes \wedge ^{\textit{m}}\textit{T}^{*}\textit{M}$ on $\textit{Y}\rightarrow \textit{M}$ is of the form $\textit{D}\left ( \epsilon ,\textit{X} \right )= \textit{cH}\left ( \epsilon \right )$ for a real number $\textit{c}$, where $\textit{H}$ is the Helmholtz operator.
dc.affiliation
Wydział Matematyki i Informatyki : Instytut Matematyki
dc.contributor.author
Mikulski, Włodzimierz - 130617
dc.date.accession
2025-11-03
dc.date.accessioned
2025-11-03T06:18:36Z
dc.date.available
2025-11-03T06:18:36Z
dc.date.createdaten
2025-10-20T08:42:31Z
dc.date.issued
2025
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.number
3
dc.description.version
ostateczna wersja wydawcy
dc.description.volume
119
dc.identifier.articleid
85
dc.identifier.doi
10.1007/s13398-025-01751-y
dc.identifier.eissn
1579-1505
dc.identifier.issn
1578-7303
dc.identifier.project
DRC AI
dc.identifier.uri
https://ruj.uj.edu.pl/handle/item/564702
dc.identifier.weblink
https://link.springer.com/article/10.1007/s13398-025-01751-y#citeas
dc.language
eng
dc.language.container
eng
dc.rights
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
inne
dc.subject.en
fibered manifold
dc.subject.en
Lagrangian
dc.subject.en
Euler map
dc.subject.en
Helmholtz map
dc.subject.en
natural operator
dc.subject.en
The Euler operator
dc.subject.en
The Helmholtz operator
dc.subtype
Article
dc.title
Uniqueness results for the Euler and Helmholtz operators from the variational calculus
dc.title.journal
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas
dc.type
JournalArticle
dspace.entity.typeen
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
18
Views per month
Views per city
Krakow
3
Brzesko
1
Kielce
1
Prague
1
Downloads
mikulski_uniqueness_results_for_the_euler_2025.pdf
5